salohnana2018's picture
Upload tokenizer
5831732 verified
|
raw
history blame
2.74 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
base_model: CAMeL-Lab/bert-base-arabic-camelbert-ca
model-index:
  - name: POEMS-CAMELBERT-CA-RUN4-20-fullDatafreez
    results: []

POEMS-CAMELBERT-CA-RUN4-20-fullDatafreez

This model is a fine-tuned version of CAMeL-Lab/bert-base-arabic-camelbert-ca on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9281
  • Accuracy: 0.6272
  • F1: 0.6272
  • Precision: 0.6272
  • Recall: 0.6272

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 13

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.1788 1.0 568 1.0292 0.5625 0.5625 0.5625 0.5625
0.9947 2.0 1136 0.9846 0.5691 0.5691 0.5691 0.5691
0.8545 3.0 1704 1.0733 0.5802 0.5802 0.5802 0.5802
0.7233 4.0 2272 1.0215 0.6090 0.6090 0.6090 0.6090
0.6035 5.0 2840 0.9992 0.6348 0.6348 0.6348 0.6348
0.4944 6.0 3408 1.1378 0.6179 0.6179 0.6179 0.6179
0.3977 7.0 3976 1.2612 0.6188 0.6188 0.6188 0.6188
0.3079 8.0 4544 1.2490 0.6365 0.6365 0.6365 0.6365
0.2381 9.0 5112 1.5318 0.6139 0.6139 0.6139 0.6139
0.1924 10.0 5680 1.6346 0.6268 0.6268 0.6268 0.6268
0.1446 11.0 6248 1.7044 0.6303 0.6303 0.6303 0.6303
0.1195 12.0 6816 1.8142 0.625 0.625 0.625 0.625
0.0909 13.0 7384 1.9281 0.6272 0.6272 0.6272 0.6272

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2