salohnana2018's picture
Upload BertForTokenClassification
29ee48e verified
|
raw
history blame
2.06 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: salohnana2018/HARD_without_dp_4248_camel_prepocessed_OTE
model-index:
  - name: OTE-DAPT-CAMEL-MSA-HARD-4248-SUBSAMPLE-run3
    results: []

OTE-DAPT-CAMEL-MSA-HARD-4248-SUBSAMPLE-run3

This model is a fine-tuned version of salohnana2018/HARD_without_dp_4248_camel_prepocessed_OTE on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1685
  • Precision: 0.7509
  • Recall: 0.7962
  • F1: 0.7729
  • Accuracy: 0.9548

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 23
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1495 1.0 121 0.1123 0.7811 0.7573 0.7690 0.9567
0.0847 2.0 242 0.1201 0.7505 0.7972 0.7731 0.9540
0.0581 3.0 363 0.1314 0.7610 0.7853 0.7729 0.9560
0.0363 4.0 484 0.1529 0.7649 0.7798 0.7723 0.9551
0.0242 5.0 605 0.1685 0.7509 0.7962 0.7729 0.9548

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2