arabert_cross_relevance_task6_fold2
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2957
- Qwk: 0.0
- Mse: 0.2962
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.1176 | 2 | 0.4557 | 0.0551 | 0.4551 |
No log | 0.2353 | 4 | 0.7639 | 0.1621 | 0.7645 |
No log | 0.3529 | 6 | 0.6785 | 0.0828 | 0.6793 |
No log | 0.4706 | 8 | 0.2858 | 0.0 | 0.2858 |
No log | 0.5882 | 10 | 0.3157 | 0.0 | 0.3153 |
No log | 0.7059 | 12 | 0.2872 | 0.0 | 0.2872 |
No log | 0.8235 | 14 | 0.3422 | 0.0491 | 0.3427 |
No log | 0.9412 | 16 | 0.4804 | 0.1093 | 0.4812 |
No log | 1.0588 | 18 | 0.5008 | 0.0622 | 0.5017 |
No log | 1.1765 | 20 | 0.4329 | 0.1899 | 0.4337 |
No log | 1.2941 | 22 | 0.3437 | -0.0329 | 0.3443 |
No log | 1.4118 | 24 | 0.3016 | 0.0 | 0.3020 |
No log | 1.5294 | 26 | 0.3038 | 0.0 | 0.3043 |
No log | 1.6471 | 28 | 0.3038 | 0.0 | 0.3043 |
No log | 1.7647 | 30 | 0.3490 | 0.0491 | 0.3496 |
No log | 1.8824 | 32 | 0.3388 | 0.0368 | 0.3394 |
No log | 2.0 | 34 | 0.3023 | 0.0 | 0.3028 |
No log | 2.1176 | 36 | 0.2791 | 0.0 | 0.2795 |
No log | 2.2353 | 38 | 0.2726 | 0.0 | 0.2729 |
No log | 2.3529 | 40 | 0.2754 | 0.0 | 0.2758 |
No log | 2.4706 | 42 | 0.2899 | 0.0 | 0.2904 |
No log | 2.5882 | 44 | 0.2963 | 0.0 | 0.2968 |
No log | 2.7059 | 46 | 0.3008 | 0.0 | 0.3013 |
No log | 2.8235 | 48 | 0.3022 | 0.0 | 0.3027 |
No log | 2.9412 | 50 | 0.3239 | -0.0164 | 0.3245 |
No log | 3.0588 | 52 | 0.3244 | 0.0 | 0.3250 |
No log | 3.1765 | 54 | 0.3271 | 0.0122 | 0.3277 |
No log | 3.2941 | 56 | 0.3066 | 0.0 | 0.3070 |
No log | 3.4118 | 58 | 0.2914 | 0.0 | 0.2918 |
No log | 3.5294 | 60 | 0.2879 | 0.0 | 0.2883 |
No log | 3.6471 | 62 | 0.3009 | 0.0122 | 0.3013 |
No log | 3.7647 | 64 | 0.3097 | -0.0208 | 0.3102 |
No log | 3.8824 | 66 | 0.2902 | 0.0 | 0.2906 |
No log | 4.0 | 68 | 0.2854 | 0.0 | 0.2857 |
No log | 4.1176 | 70 | 0.3075 | -0.0042 | 0.3080 |
No log | 4.2353 | 72 | 0.3194 | 0.0080 | 0.3199 |
No log | 4.3529 | 74 | 0.3140 | 0.0 | 0.3145 |
No log | 4.4706 | 76 | 0.3268 | 0.0245 | 0.3273 |
No log | 4.5882 | 78 | 0.3408 | 0.0491 | 0.3413 |
No log | 4.7059 | 80 | 0.3249 | 0.0122 | 0.3254 |
No log | 4.8235 | 82 | 0.3217 | 0.0122 | 0.3222 |
No log | 4.9412 | 84 | 0.3068 | 0.0 | 0.3073 |
No log | 5.0588 | 86 | 0.2957 | 0.0 | 0.2961 |
No log | 5.1765 | 88 | 0.2935 | 0.0 | 0.2939 |
No log | 5.2941 | 90 | 0.2907 | 0.0 | 0.2911 |
No log | 5.4118 | 92 | 0.2928 | 0.0 | 0.2932 |
No log | 5.5294 | 94 | 0.3137 | 0.0245 | 0.3143 |
No log | 5.6471 | 96 | 0.3485 | 0.0706 | 0.3491 |
No log | 5.7647 | 98 | 0.3569 | 0.0961 | 0.3576 |
No log | 5.8824 | 100 | 0.3355 | 0.0450 | 0.3361 |
No log | 6.0 | 102 | 0.3087 | 0.0122 | 0.3093 |
No log | 6.1176 | 104 | 0.2963 | 0.0 | 0.2967 |
No log | 6.2353 | 106 | 0.2984 | 0.0 | 0.2989 |
No log | 6.3529 | 108 | 0.3049 | 0.0122 | 0.3055 |
No log | 6.4706 | 110 | 0.2955 | 0.0 | 0.2959 |
No log | 6.5882 | 112 | 0.2913 | 0.0 | 0.2918 |
No log | 6.7059 | 114 | 0.2962 | 0.0 | 0.2966 |
No log | 6.8235 | 116 | 0.2953 | 0.0 | 0.2958 |
No log | 6.9412 | 118 | 0.2980 | 0.0 | 0.2985 |
No log | 7.0588 | 120 | 0.2992 | 0.0 | 0.2997 |
No log | 7.1765 | 122 | 0.3007 | 0.0 | 0.3012 |
No log | 7.2941 | 124 | 0.3091 | 0.0368 | 0.3097 |
No log | 7.4118 | 126 | 0.3122 | 0.0368 | 0.3128 |
No log | 7.5294 | 128 | 0.3042 | 0.0368 | 0.3048 |
No log | 7.6471 | 130 | 0.2990 | 0.0 | 0.2995 |
No log | 7.7647 | 132 | 0.2979 | 0.0 | 0.2984 |
No log | 7.8824 | 134 | 0.2985 | 0.0 | 0.2990 |
No log | 8.0 | 136 | 0.3036 | 0.0245 | 0.3042 |
No log | 8.1176 | 138 | 0.3069 | 0.0245 | 0.3074 |
No log | 8.2353 | 140 | 0.3063 | 0.0245 | 0.3068 |
No log | 8.3529 | 142 | 0.3012 | 0.0122 | 0.3017 |
No log | 8.4706 | 144 | 0.2968 | 0.0 | 0.2973 |
No log | 8.5882 | 146 | 0.2951 | 0.0 | 0.2956 |
No log | 8.7059 | 148 | 0.2938 | 0.0 | 0.2942 |
No log | 8.8235 | 150 | 0.2931 | 0.0 | 0.2936 |
No log | 8.9412 | 152 | 0.2931 | 0.0 | 0.2935 |
No log | 9.0588 | 154 | 0.2943 | 0.0 | 0.2948 |
No log | 9.1765 | 156 | 0.2964 | 0.0 | 0.2969 |
No log | 9.2941 | 158 | 0.2975 | 0.0122 | 0.2980 |
No log | 9.4118 | 160 | 0.2970 | 0.0 | 0.2975 |
No log | 9.5294 | 162 | 0.2962 | 0.0 | 0.2967 |
No log | 9.6471 | 164 | 0.2957 | 0.0 | 0.2962 |
No log | 9.7647 | 166 | 0.2956 | 0.0 | 0.2960 |
No log | 9.8824 | 168 | 0.2955 | 0.0 | 0.2960 |
No log | 10.0 | 170 | 0.2957 | 0.0 | 0.2962 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for salbatarni/arabert_cross_relevance_task6_fold2
Base model
aubmindlab/bert-base-arabertv02