arabert_cross_relevance_task4_fold2

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4752
  • Qwk: 0.1093
  • Mse: 0.4759

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.1111 2 0.5785 0.0868 0.5777
No log 0.2222 4 0.2943 -0.0164 0.2947
No log 0.3333 6 0.3987 0.0024 0.3993
No log 0.4444 8 0.3899 0.0752 0.3904
No log 0.5556 10 0.3473 -0.0042 0.3477
No log 0.6667 12 0.4204 0.0370 0.4209
No log 0.7778 14 0.5631 -0.0284 0.5638
No log 0.8889 16 0.5554 -0.0028 0.5561
No log 1.0 18 0.5578 0.0426 0.5584
No log 1.1111 20 0.4455 0.0325 0.4461
No log 1.2222 22 0.3963 0.0368 0.3969
No log 1.3333 24 0.3919 0.0243 0.3924
No log 1.4444 26 0.4089 0.0665 0.4094
No log 1.5556 28 0.3918 0.0619 0.3923
No log 1.6667 30 0.4355 -0.0079 0.4360
No log 1.7778 32 0.4965 0.1166 0.4971
No log 1.8889 34 0.5320 -0.0186 0.5326
No log 2.0 36 0.5879 0.0536 0.5885
No log 2.1111 38 0.5920 0.1117 0.5926
No log 2.2222 40 0.5586 0.1740 0.5592
No log 2.3333 42 0.4887 0.0570 0.4892
No log 2.4444 44 0.4523 0.0512 0.4527
No log 2.5556 46 0.4295 0.0633 0.4299
No log 2.6667 48 0.4439 0.0643 0.4444
No log 2.7778 50 0.4579 -0.0142 0.4585
No log 2.8889 52 0.4404 0.0594 0.4409
No log 3.0 54 0.4585 0.0325 0.4590
No log 3.1111 56 0.5216 0.1088 0.5222
No log 3.2222 58 0.5552 0.0747 0.5559
No log 3.3333 60 0.5458 0.1373 0.5465
No log 3.4444 62 0.4947 0.1774 0.4953
No log 3.5556 64 0.4605 0.0419 0.4611
No log 3.6667 66 0.4341 -0.0514 0.4346
No log 3.7778 68 0.4227 -0.0500 0.4232
No log 3.8889 70 0.4149 -0.0016 0.4154
No log 4.0 72 0.4133 0.0112 0.4138
No log 4.1111 74 0.4299 0.0681 0.4304
No log 4.2222 76 0.4431 0.0874 0.4437
No log 4.3333 78 0.4609 0.1618 0.4615
No log 4.4444 80 0.4845 0.1449 0.4851
No log 4.5556 82 0.5171 0.1801 0.5178
No log 4.6667 84 0.5429 0.0638 0.5436
No log 4.7778 86 0.5295 0.1054 0.5302
No log 4.8889 88 0.4873 0.1361 0.4880
No log 5.0 90 0.4385 0.0551 0.4391
No log 5.1111 92 0.4189 0.0586 0.4195
No log 5.2222 94 0.4360 0.0730 0.4366
No log 5.3333 96 0.4771 0.0422 0.4778
No log 5.4444 98 0.4940 0.0473 0.4947
No log 5.5556 100 0.5040 0.0525 0.5047
No log 5.6667 102 0.4813 0.0030 0.4819
No log 5.7778 104 0.4381 0.0917 0.4387
No log 5.8889 106 0.3938 -0.0553 0.3943
No log 6.0 108 0.3964 -0.0475 0.3969
No log 6.1111 110 0.4237 0.0059 0.4242
No log 6.2222 112 0.4695 0.1283 0.4701
No log 6.3333 114 0.4933 0.0923 0.4940
No log 6.4444 116 0.5089 0.0578 0.5096
No log 6.5556 118 0.5097 0.0886 0.5105
No log 6.6667 120 0.4867 0.0724 0.4874
No log 6.7778 122 0.4496 0.0831 0.4502
No log 6.8889 124 0.4192 0.0197 0.4198
No log 7.0 126 0.4075 0.0496 0.4081
No log 7.1111 128 0.4043 0.0369 0.4049
No log 7.2222 130 0.4164 0.0326 0.4170
No log 7.3333 132 0.4361 0.0815 0.4367
No log 7.4444 134 0.4517 0.1068 0.4524
No log 7.5556 136 0.4513 0.1209 0.4519
No log 7.6667 138 0.4452 0.1056 0.4458
No log 7.7778 140 0.4514 0.0743 0.4520
No log 7.8889 142 0.4671 0.1472 0.4677
No log 8.0 144 0.4902 0.0969 0.4909
No log 8.1111 146 0.5000 -0.0230 0.5007
No log 8.2222 148 0.4999 -0.0028 0.5006
No log 8.3333 150 0.4924 0.0374 0.4931
No log 8.4444 152 0.4849 0.0857 0.4855
No log 8.5556 154 0.4790 0.0857 0.4796
No log 8.6667 156 0.4774 0.0857 0.4780
No log 8.7778 158 0.4814 0.1004 0.4820
No log 8.8889 160 0.4916 0.0866 0.4923
No log 9.0 162 0.4998 0.0525 0.5005
No log 9.1111 164 0.5009 0.0676 0.5016
No log 9.2222 166 0.4971 0.0676 0.4978
No log 9.3333 168 0.4903 0.1166 0.4910
No log 9.4444 170 0.4831 0.1641 0.4838
No log 9.5556 172 0.4811 0.1832 0.4818
No log 9.6667 174 0.4780 0.1534 0.4786
No log 9.7778 176 0.4767 0.1239 0.4774
No log 9.8889 178 0.4754 0.1093 0.4760
No log 10.0 180 0.4752 0.1093 0.4759

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/arabert_cross_relevance_task4_fold2

Finetuned
(4206)
this model