arabert_cross_relevance_task4_fold2
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4752
- Qwk: 0.1093
- Mse: 0.4759
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.1111 | 2 | 0.5785 | 0.0868 | 0.5777 |
No log | 0.2222 | 4 | 0.2943 | -0.0164 | 0.2947 |
No log | 0.3333 | 6 | 0.3987 | 0.0024 | 0.3993 |
No log | 0.4444 | 8 | 0.3899 | 0.0752 | 0.3904 |
No log | 0.5556 | 10 | 0.3473 | -0.0042 | 0.3477 |
No log | 0.6667 | 12 | 0.4204 | 0.0370 | 0.4209 |
No log | 0.7778 | 14 | 0.5631 | -0.0284 | 0.5638 |
No log | 0.8889 | 16 | 0.5554 | -0.0028 | 0.5561 |
No log | 1.0 | 18 | 0.5578 | 0.0426 | 0.5584 |
No log | 1.1111 | 20 | 0.4455 | 0.0325 | 0.4461 |
No log | 1.2222 | 22 | 0.3963 | 0.0368 | 0.3969 |
No log | 1.3333 | 24 | 0.3919 | 0.0243 | 0.3924 |
No log | 1.4444 | 26 | 0.4089 | 0.0665 | 0.4094 |
No log | 1.5556 | 28 | 0.3918 | 0.0619 | 0.3923 |
No log | 1.6667 | 30 | 0.4355 | -0.0079 | 0.4360 |
No log | 1.7778 | 32 | 0.4965 | 0.1166 | 0.4971 |
No log | 1.8889 | 34 | 0.5320 | -0.0186 | 0.5326 |
No log | 2.0 | 36 | 0.5879 | 0.0536 | 0.5885 |
No log | 2.1111 | 38 | 0.5920 | 0.1117 | 0.5926 |
No log | 2.2222 | 40 | 0.5586 | 0.1740 | 0.5592 |
No log | 2.3333 | 42 | 0.4887 | 0.0570 | 0.4892 |
No log | 2.4444 | 44 | 0.4523 | 0.0512 | 0.4527 |
No log | 2.5556 | 46 | 0.4295 | 0.0633 | 0.4299 |
No log | 2.6667 | 48 | 0.4439 | 0.0643 | 0.4444 |
No log | 2.7778 | 50 | 0.4579 | -0.0142 | 0.4585 |
No log | 2.8889 | 52 | 0.4404 | 0.0594 | 0.4409 |
No log | 3.0 | 54 | 0.4585 | 0.0325 | 0.4590 |
No log | 3.1111 | 56 | 0.5216 | 0.1088 | 0.5222 |
No log | 3.2222 | 58 | 0.5552 | 0.0747 | 0.5559 |
No log | 3.3333 | 60 | 0.5458 | 0.1373 | 0.5465 |
No log | 3.4444 | 62 | 0.4947 | 0.1774 | 0.4953 |
No log | 3.5556 | 64 | 0.4605 | 0.0419 | 0.4611 |
No log | 3.6667 | 66 | 0.4341 | -0.0514 | 0.4346 |
No log | 3.7778 | 68 | 0.4227 | -0.0500 | 0.4232 |
No log | 3.8889 | 70 | 0.4149 | -0.0016 | 0.4154 |
No log | 4.0 | 72 | 0.4133 | 0.0112 | 0.4138 |
No log | 4.1111 | 74 | 0.4299 | 0.0681 | 0.4304 |
No log | 4.2222 | 76 | 0.4431 | 0.0874 | 0.4437 |
No log | 4.3333 | 78 | 0.4609 | 0.1618 | 0.4615 |
No log | 4.4444 | 80 | 0.4845 | 0.1449 | 0.4851 |
No log | 4.5556 | 82 | 0.5171 | 0.1801 | 0.5178 |
No log | 4.6667 | 84 | 0.5429 | 0.0638 | 0.5436 |
No log | 4.7778 | 86 | 0.5295 | 0.1054 | 0.5302 |
No log | 4.8889 | 88 | 0.4873 | 0.1361 | 0.4880 |
No log | 5.0 | 90 | 0.4385 | 0.0551 | 0.4391 |
No log | 5.1111 | 92 | 0.4189 | 0.0586 | 0.4195 |
No log | 5.2222 | 94 | 0.4360 | 0.0730 | 0.4366 |
No log | 5.3333 | 96 | 0.4771 | 0.0422 | 0.4778 |
No log | 5.4444 | 98 | 0.4940 | 0.0473 | 0.4947 |
No log | 5.5556 | 100 | 0.5040 | 0.0525 | 0.5047 |
No log | 5.6667 | 102 | 0.4813 | 0.0030 | 0.4819 |
No log | 5.7778 | 104 | 0.4381 | 0.0917 | 0.4387 |
No log | 5.8889 | 106 | 0.3938 | -0.0553 | 0.3943 |
No log | 6.0 | 108 | 0.3964 | -0.0475 | 0.3969 |
No log | 6.1111 | 110 | 0.4237 | 0.0059 | 0.4242 |
No log | 6.2222 | 112 | 0.4695 | 0.1283 | 0.4701 |
No log | 6.3333 | 114 | 0.4933 | 0.0923 | 0.4940 |
No log | 6.4444 | 116 | 0.5089 | 0.0578 | 0.5096 |
No log | 6.5556 | 118 | 0.5097 | 0.0886 | 0.5105 |
No log | 6.6667 | 120 | 0.4867 | 0.0724 | 0.4874 |
No log | 6.7778 | 122 | 0.4496 | 0.0831 | 0.4502 |
No log | 6.8889 | 124 | 0.4192 | 0.0197 | 0.4198 |
No log | 7.0 | 126 | 0.4075 | 0.0496 | 0.4081 |
No log | 7.1111 | 128 | 0.4043 | 0.0369 | 0.4049 |
No log | 7.2222 | 130 | 0.4164 | 0.0326 | 0.4170 |
No log | 7.3333 | 132 | 0.4361 | 0.0815 | 0.4367 |
No log | 7.4444 | 134 | 0.4517 | 0.1068 | 0.4524 |
No log | 7.5556 | 136 | 0.4513 | 0.1209 | 0.4519 |
No log | 7.6667 | 138 | 0.4452 | 0.1056 | 0.4458 |
No log | 7.7778 | 140 | 0.4514 | 0.0743 | 0.4520 |
No log | 7.8889 | 142 | 0.4671 | 0.1472 | 0.4677 |
No log | 8.0 | 144 | 0.4902 | 0.0969 | 0.4909 |
No log | 8.1111 | 146 | 0.5000 | -0.0230 | 0.5007 |
No log | 8.2222 | 148 | 0.4999 | -0.0028 | 0.5006 |
No log | 8.3333 | 150 | 0.4924 | 0.0374 | 0.4931 |
No log | 8.4444 | 152 | 0.4849 | 0.0857 | 0.4855 |
No log | 8.5556 | 154 | 0.4790 | 0.0857 | 0.4796 |
No log | 8.6667 | 156 | 0.4774 | 0.0857 | 0.4780 |
No log | 8.7778 | 158 | 0.4814 | 0.1004 | 0.4820 |
No log | 8.8889 | 160 | 0.4916 | 0.0866 | 0.4923 |
No log | 9.0 | 162 | 0.4998 | 0.0525 | 0.5005 |
No log | 9.1111 | 164 | 0.5009 | 0.0676 | 0.5016 |
No log | 9.2222 | 166 | 0.4971 | 0.0676 | 0.4978 |
No log | 9.3333 | 168 | 0.4903 | 0.1166 | 0.4910 |
No log | 9.4444 | 170 | 0.4831 | 0.1641 | 0.4838 |
No log | 9.5556 | 172 | 0.4811 | 0.1832 | 0.4818 |
No log | 9.6667 | 174 | 0.4780 | 0.1534 | 0.4786 |
No log | 9.7778 | 176 | 0.4767 | 0.1239 | 0.4774 |
No log | 9.8889 | 178 | 0.4754 | 0.1093 | 0.4760 |
No log | 10.0 | 180 | 0.4752 | 0.1093 | 0.4759 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for salbatarni/arabert_cross_relevance_task4_fold2
Base model
aubmindlab/bert-base-arabertv02