arabert_cross_relevance_task3_fold6

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3958
  • Qwk: 0.2096
  • Mse: 0.3959

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.1176 2 0.7510 0.0098 0.7490
No log 0.2353 4 0.3906 0.1162 0.3902
No log 0.3529 6 0.3053 0.1347 0.3057
No log 0.4706 8 0.2972 0.1520 0.2976
No log 0.5882 10 0.2828 0.1830 0.2831
No log 0.7059 12 0.2698 0.1906 0.2703
No log 0.8235 14 0.2743 0.1500 0.2750
No log 0.9412 16 0.2742 0.1578 0.2747
No log 1.0588 18 0.3079 0.1726 0.3083
No log 1.1765 20 0.3022 0.1999 0.3025
No log 1.2941 22 0.2720 0.2049 0.2724
No log 1.4118 24 0.2712 0.2178 0.2717
No log 1.5294 26 0.2820 0.2018 0.2823
No log 1.6471 28 0.2988 0.2137 0.2990
No log 1.7647 30 0.2801 0.2099 0.2803
No log 1.8824 32 0.2536 0.2155 0.2541
No log 2.0 34 0.2547 0.2222 0.2553
No log 2.1176 36 0.2817 0.1893 0.2821
No log 2.2353 38 0.3173 0.2127 0.3175
No log 2.3529 40 0.2805 0.1991 0.2808
No log 2.4706 42 0.2617 0.2112 0.2624
No log 2.5882 44 0.2662 0.2183 0.2670
No log 2.7059 46 0.2560 0.2109 0.2565
No log 2.8235 48 0.3002 0.2083 0.3005
No log 2.9412 50 0.3062 0.2127 0.3065
No log 3.0588 52 0.2753 0.1995 0.2757
No log 3.1765 54 0.2479 0.2057 0.2485
No log 3.2941 56 0.2470 0.1860 0.2476
No log 3.4118 58 0.2610 0.2099 0.2614
No log 3.5294 60 0.2690 0.2044 0.2693
No log 3.6471 62 0.2641 0.2067 0.2645
No log 3.7647 64 0.2712 0.1995 0.2715
No log 3.8824 66 0.2789 0.1943 0.2792
No log 4.0 68 0.2918 0.2127 0.2920
No log 4.1176 70 0.2717 0.2038 0.2720
No log 4.2353 72 0.2866 0.2127 0.2868
No log 4.3529 74 0.2850 0.2127 0.2852
No log 4.4706 76 0.2771 0.2292 0.2774
No log 4.5882 78 0.2687 0.1915 0.2690
No log 4.7059 80 0.2758 0.2044 0.2761
No log 4.8235 82 0.3101 0.2211 0.3103
No log 4.9412 84 0.3572 0.2110 0.3573
No log 5.0588 86 0.3906 0.1858 0.3906
No log 5.1765 88 0.3591 0.1982 0.3592
No log 5.2941 90 0.3170 0.2140 0.3173
No log 5.4118 92 0.3098 0.2140 0.3102
No log 5.5294 94 0.3073 0.2048 0.3077
No log 5.6471 96 0.3304 0.2001 0.3307
No log 5.7647 98 0.3825 0.2103 0.3825
No log 5.8824 100 0.3978 0.1979 0.3978
No log 6.0 102 0.3627 0.2110 0.3629
No log 6.1176 104 0.3352 0.1985 0.3354
No log 6.2353 106 0.3174 0.2127 0.3177
No log 6.3529 108 0.3418 0.2070 0.3421
No log 6.4706 110 0.3437 0.1982 0.3439
No log 6.5882 112 0.3452 0.1982 0.3454
No log 6.7059 114 0.3485 0.2070 0.3487
No log 6.8235 116 0.3713 0.1979 0.3714
No log 6.9412 118 0.3854 0.1858 0.3855
No log 7.0588 120 0.3950 0.1821 0.3949
No log 7.1765 122 0.3832 0.1858 0.3832
No log 7.2941 124 0.3695 0.2019 0.3697
No log 7.4118 126 0.3763 0.2058 0.3764
No log 7.5294 128 0.3884 0.1898 0.3885
No log 7.6471 130 0.4063 0.1785 0.4064
No log 7.7647 132 0.3900 0.1780 0.3901
No log 7.8824 134 0.3822 0.1739 0.3823
No log 8.0 136 0.3725 0.1856 0.3726
No log 8.1176 138 0.3559 0.1854 0.3560
No log 8.2353 140 0.3576 0.2023 0.3578
No log 8.3529 142 0.3825 0.1977 0.3826
No log 8.4706 144 0.3960 0.2015 0.3961
No log 8.5882 146 0.3877 0.2015 0.3877
No log 8.7059 148 0.3846 0.2096 0.3847
No log 8.8235 150 0.3711 0.2058 0.3712
No log 8.9412 152 0.3592 0.2103 0.3594
No log 9.0588 154 0.3526 0.2103 0.3529
No log 9.1765 156 0.3597 0.2141 0.3598
No log 9.2941 158 0.3711 0.2058 0.3712
No log 9.4118 160 0.3827 0.2096 0.3828
No log 9.5294 162 0.3867 0.2096 0.3867
No log 9.6471 164 0.3912 0.2096 0.3912
No log 9.7647 166 0.3942 0.2096 0.3942
No log 9.8824 168 0.3960 0.2096 0.3960
No log 10.0 170 0.3958 0.2096 0.3959

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/arabert_cross_relevance_task3_fold6

Finetuned
(2940)
this model