arabert_cross_relevance_task3_fold4
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2244
- Qwk: 0.3147
- Mse: 0.2244
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.1176 | 2 | 0.6247 | 0.1100 | 0.6247 |
No log | 0.2353 | 4 | 0.4274 | 0.2657 | 0.4274 |
No log | 0.3529 | 6 | 0.3933 | 0.3269 | 0.3933 |
No log | 0.4706 | 8 | 0.3251 | 0.1665 | 0.3251 |
No log | 0.5882 | 10 | 0.4511 | 0.2506 | 0.4511 |
No log | 0.7059 | 12 | 0.3380 | 0.2405 | 0.3380 |
No log | 0.8235 | 14 | 0.2594 | 0.1665 | 0.2594 |
No log | 0.9412 | 16 | 0.2948 | 0.2149 | 0.2948 |
No log | 1.0588 | 18 | 0.2980 | 0.2995 | 0.2980 |
No log | 1.1765 | 20 | 0.2541 | 0.2638 | 0.2541 |
No log | 1.2941 | 22 | 0.2285 | 0.2330 | 0.2285 |
No log | 1.4118 | 24 | 0.2279 | 0.2837 | 0.2279 |
No log | 1.5294 | 26 | 0.2347 | 0.2760 | 0.2347 |
No log | 1.6471 | 28 | 0.2414 | 0.3095 | 0.2414 |
No log | 1.7647 | 30 | 0.2534 | 0.3281 | 0.2534 |
No log | 1.8824 | 32 | 0.2613 | 0.3439 | 0.2613 |
No log | 2.0 | 34 | 0.2476 | 0.3483 | 0.2476 |
No log | 2.1176 | 36 | 0.2444 | 0.3210 | 0.2444 |
No log | 2.2353 | 38 | 0.2368 | 0.3126 | 0.2368 |
No log | 2.3529 | 40 | 0.2271 | 0.3358 | 0.2271 |
No log | 2.4706 | 42 | 0.2280 | 0.3354 | 0.2280 |
No log | 2.5882 | 44 | 0.2317 | 0.3468 | 0.2317 |
No log | 2.7059 | 46 | 0.2288 | 0.3795 | 0.2288 |
No log | 2.8235 | 48 | 0.2284 | 0.3808 | 0.2284 |
No log | 2.9412 | 50 | 0.2248 | 0.4119 | 0.2248 |
No log | 3.0588 | 52 | 0.2179 | 0.3948 | 0.2179 |
No log | 3.1765 | 54 | 0.2135 | 0.3797 | 0.2135 |
No log | 3.2941 | 56 | 0.2038 | 0.3300 | 0.2038 |
No log | 3.4118 | 58 | 0.2043 | 0.3232 | 0.2043 |
No log | 3.5294 | 60 | 0.2143 | 0.3534 | 0.2143 |
No log | 3.6471 | 62 | 0.2325 | 0.4158 | 0.2325 |
No log | 3.7647 | 64 | 0.2488 | 0.4475 | 0.2488 |
No log | 3.8824 | 66 | 0.2377 | 0.3842 | 0.2377 |
No log | 4.0 | 68 | 0.2342 | 0.3300 | 0.2342 |
No log | 4.1176 | 70 | 0.2380 | 0.4475 | 0.2380 |
No log | 4.2353 | 72 | 0.2243 | 0.4095 | 0.2243 |
No log | 4.3529 | 74 | 0.2117 | 0.3895 | 0.2117 |
No log | 4.4706 | 76 | 0.2105 | 0.3541 | 0.2105 |
No log | 4.5882 | 78 | 0.2109 | 0.3824 | 0.2109 |
No log | 4.7059 | 80 | 0.2150 | 0.4058 | 0.2150 |
No log | 4.8235 | 82 | 0.2189 | 0.4186 | 0.2189 |
No log | 4.9412 | 84 | 0.2207 | 0.3858 | 0.2207 |
No log | 5.0588 | 86 | 0.2206 | 0.3152 | 0.2206 |
No log | 5.1765 | 88 | 0.2173 | 0.2918 | 0.2173 |
No log | 5.2941 | 90 | 0.2159 | 0.3281 | 0.2159 |
No log | 5.4118 | 92 | 0.2217 | 0.3375 | 0.2217 |
No log | 5.5294 | 94 | 0.2240 | 0.4196 | 0.2240 |
No log | 5.6471 | 96 | 0.2310 | 0.4755 | 0.2310 |
No log | 5.7647 | 98 | 0.2348 | 0.4823 | 0.2348 |
No log | 5.8824 | 100 | 0.2267 | 0.3877 | 0.2267 |
No log | 6.0 | 102 | 0.2189 | 0.3233 | 0.2189 |
No log | 6.1176 | 104 | 0.2198 | 0.3013 | 0.2198 |
No log | 6.2353 | 106 | 0.2188 | 0.3233 | 0.2188 |
No log | 6.3529 | 108 | 0.2193 | 0.3440 | 0.2193 |
No log | 6.4706 | 110 | 0.2212 | 0.3392 | 0.2212 |
No log | 6.5882 | 112 | 0.2240 | 0.3533 | 0.2240 |
No log | 6.7059 | 114 | 0.2234 | 0.4012 | 0.2234 |
No log | 6.8235 | 116 | 0.2253 | 0.3980 | 0.2253 |
No log | 6.9412 | 118 | 0.2273 | 0.3906 | 0.2273 |
No log | 7.0588 | 120 | 0.2269 | 0.4035 | 0.2269 |
No log | 7.1765 | 122 | 0.2251 | 0.3784 | 0.2251 |
No log | 7.2941 | 124 | 0.2253 | 0.4107 | 0.2253 |
No log | 7.4118 | 126 | 0.2255 | 0.3891 | 0.2255 |
No log | 7.5294 | 128 | 0.2218 | 0.3462 | 0.2218 |
No log | 7.6471 | 130 | 0.2198 | 0.3255 | 0.2198 |
No log | 7.7647 | 132 | 0.2206 | 0.3328 | 0.2206 |
No log | 7.8824 | 134 | 0.2204 | 0.3286 | 0.2204 |
No log | 8.0 | 136 | 0.2202 | 0.3416 | 0.2202 |
No log | 8.1176 | 138 | 0.2237 | 0.3458 | 0.2237 |
No log | 8.2353 | 140 | 0.2257 | 0.3529 | 0.2257 |
No log | 8.3529 | 142 | 0.2246 | 0.3433 | 0.2246 |
No log | 8.4706 | 144 | 0.2235 | 0.3464 | 0.2235 |
No log | 8.5882 | 146 | 0.2231 | 0.3396 | 0.2231 |
No log | 8.7059 | 148 | 0.2225 | 0.3328 | 0.2225 |
No log | 8.8235 | 150 | 0.2224 | 0.3119 | 0.2224 |
No log | 8.9412 | 152 | 0.2226 | 0.3159 | 0.2226 |
No log | 9.0588 | 154 | 0.2231 | 0.3205 | 0.2231 |
No log | 9.1765 | 156 | 0.2239 | 0.3275 | 0.2239 |
No log | 9.2941 | 158 | 0.2243 | 0.3275 | 0.2243 |
No log | 9.4118 | 160 | 0.2236 | 0.3147 | 0.2236 |
No log | 9.5294 | 162 | 0.2234 | 0.3080 | 0.2234 |
No log | 9.6471 | 164 | 0.2238 | 0.3080 | 0.2238 |
No log | 9.7647 | 166 | 0.2243 | 0.3080 | 0.2243 |
No log | 9.8824 | 168 | 0.2244 | 0.3147 | 0.2244 |
No log | 10.0 | 170 | 0.2244 | 0.3147 | 0.2244 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for salbatarni/arabert_cross_relevance_task3_fold4
Base model
aubmindlab/bert-base-arabertv02