arabert_cross_relevance_task2_fold3
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2868
- Qwk: 0.4931
- Mse: 0.2868
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.1333 | 2 | 0.5163 | 0.2249 | 0.5163 |
No log | 0.2667 | 4 | 0.4386 | 0.1958 | 0.4386 |
No log | 0.4 | 6 | 0.4172 | 0.1958 | 0.4172 |
No log | 0.5333 | 8 | 0.3488 | 0.2555 | 0.3488 |
No log | 0.6667 | 10 | 0.3483 | 0.2974 | 0.3483 |
No log | 0.8 | 12 | 0.3327 | 0.2718 | 0.3327 |
No log | 0.9333 | 14 | 0.3570 | 0.2289 | 0.3570 |
No log | 1.0667 | 16 | 0.3857 | 0.3184 | 0.3857 |
No log | 1.2 | 18 | 0.3553 | 0.2711 | 0.3553 |
No log | 1.3333 | 20 | 0.3072 | 0.2825 | 0.3072 |
No log | 1.4667 | 22 | 0.2870 | 0.3248 | 0.2870 |
No log | 1.6 | 24 | 0.2719 | 0.3375 | 0.2719 |
No log | 1.7333 | 26 | 0.2776 | 0.3974 | 0.2776 |
No log | 1.8667 | 28 | 0.2783 | 0.4688 | 0.2783 |
No log | 2.0 | 30 | 0.2844 | 0.5250 | 0.2844 |
No log | 2.1333 | 32 | 0.2948 | 0.5193 | 0.2948 |
No log | 2.2667 | 34 | 0.2802 | 0.375 | 0.2802 |
No log | 2.4 | 36 | 0.2657 | 0.3297 | 0.2657 |
No log | 2.5333 | 38 | 0.2635 | 0.3258 | 0.2635 |
No log | 2.6667 | 40 | 0.2700 | 0.3347 | 0.2700 |
No log | 2.8 | 42 | 0.2862 | 0.3299 | 0.2862 |
No log | 2.9333 | 44 | 0.3057 | 0.3666 | 0.3057 |
No log | 3.0667 | 46 | 0.3164 | 0.4048 | 0.3164 |
No log | 3.2 | 48 | 0.3074 | 0.3977 | 0.3074 |
No log | 3.3333 | 50 | 0.2918 | 0.3729 | 0.2918 |
No log | 3.4667 | 52 | 0.2907 | 0.4232 | 0.2907 |
No log | 3.6 | 54 | 0.2835 | 0.4066 | 0.2835 |
No log | 3.7333 | 56 | 0.2768 | 0.3894 | 0.2768 |
No log | 3.8667 | 58 | 0.2866 | 0.4187 | 0.2866 |
No log | 4.0 | 60 | 0.3010 | 0.4186 | 0.3010 |
No log | 4.1333 | 62 | 0.3104 | 0.4066 | 0.3104 |
No log | 4.2667 | 64 | 0.2965 | 0.3773 | 0.2965 |
No log | 4.4 | 66 | 0.2718 | 0.3398 | 0.2718 |
No log | 4.5333 | 68 | 0.2585 | 0.3586 | 0.2585 |
No log | 4.6667 | 70 | 0.2610 | 0.3481 | 0.2610 |
No log | 4.8 | 72 | 0.2741 | 0.3533 | 0.2741 |
No log | 4.9333 | 74 | 0.2979 | 0.4156 | 0.2979 |
No log | 5.0667 | 76 | 0.3007 | 0.4214 | 0.3007 |
No log | 5.2 | 78 | 0.2959 | 0.3980 | 0.2959 |
No log | 5.3333 | 80 | 0.2864 | 0.3369 | 0.2864 |
No log | 5.4667 | 82 | 0.2716 | 0.3458 | 0.2716 |
No log | 5.6 | 84 | 0.2611 | 0.3307 | 0.2611 |
No log | 5.7333 | 86 | 0.2596 | 0.3373 | 0.2596 |
No log | 5.8667 | 88 | 0.2680 | 0.3583 | 0.2680 |
No log | 6.0 | 90 | 0.2914 | 0.3969 | 0.2914 |
No log | 6.1333 | 92 | 0.3171 | 0.4789 | 0.3171 |
No log | 6.2667 | 94 | 0.3159 | 0.5187 | 0.3159 |
No log | 6.4 | 96 | 0.3015 | 0.4948 | 0.3015 |
No log | 6.5333 | 98 | 0.2857 | 0.4598 | 0.2857 |
No log | 6.6667 | 100 | 0.2723 | 0.4572 | 0.2723 |
No log | 6.8 | 102 | 0.2683 | 0.4454 | 0.2683 |
No log | 6.9333 | 104 | 0.2753 | 0.4473 | 0.2753 |
No log | 7.0667 | 106 | 0.2829 | 0.4644 | 0.2829 |
No log | 7.2 | 108 | 0.2793 | 0.4531 | 0.2793 |
No log | 7.3333 | 110 | 0.2787 | 0.4531 | 0.2787 |
No log | 7.4667 | 112 | 0.2754 | 0.4531 | 0.2754 |
No log | 7.6 | 114 | 0.2767 | 0.4600 | 0.2767 |
No log | 7.7333 | 116 | 0.2854 | 0.4880 | 0.2854 |
No log | 7.8667 | 118 | 0.2920 | 0.5047 | 0.2920 |
No log | 8.0 | 120 | 0.2949 | 0.5212 | 0.2949 |
No log | 8.1333 | 122 | 0.2935 | 0.5204 | 0.2935 |
No log | 8.2667 | 124 | 0.2888 | 0.5040 | 0.2888 |
No log | 8.4 | 126 | 0.2843 | 0.4986 | 0.2843 |
No log | 8.5333 | 128 | 0.2811 | 0.5017 | 0.2811 |
No log | 8.6667 | 130 | 0.2800 | 0.5017 | 0.2800 |
No log | 8.8 | 132 | 0.2856 | 0.5125 | 0.2856 |
No log | 8.9333 | 134 | 0.2900 | 0.4986 | 0.2900 |
No log | 9.0667 | 136 | 0.2898 | 0.4986 | 0.2898 |
No log | 9.2 | 138 | 0.2908 | 0.5040 | 0.2908 |
No log | 9.3333 | 140 | 0.2914 | 0.5095 | 0.2914 |
No log | 9.4667 | 142 | 0.2916 | 0.5047 | 0.2916 |
No log | 9.6 | 144 | 0.2901 | 0.4986 | 0.2901 |
No log | 9.7333 | 146 | 0.2879 | 0.4931 | 0.2879 |
No log | 9.8667 | 148 | 0.2871 | 0.4931 | 0.2871 |
No log | 10.0 | 150 | 0.2868 | 0.4931 | 0.2868 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for salbatarni/arabert_cross_relevance_task2_fold3
Base model
aubmindlab/bert-base-arabertv02