arabert_cross_relevance_task2_fold3

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2868
  • Qwk: 0.4931
  • Mse: 0.2868

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.1333 2 0.5163 0.2249 0.5163
No log 0.2667 4 0.4386 0.1958 0.4386
No log 0.4 6 0.4172 0.1958 0.4172
No log 0.5333 8 0.3488 0.2555 0.3488
No log 0.6667 10 0.3483 0.2974 0.3483
No log 0.8 12 0.3327 0.2718 0.3327
No log 0.9333 14 0.3570 0.2289 0.3570
No log 1.0667 16 0.3857 0.3184 0.3857
No log 1.2 18 0.3553 0.2711 0.3553
No log 1.3333 20 0.3072 0.2825 0.3072
No log 1.4667 22 0.2870 0.3248 0.2870
No log 1.6 24 0.2719 0.3375 0.2719
No log 1.7333 26 0.2776 0.3974 0.2776
No log 1.8667 28 0.2783 0.4688 0.2783
No log 2.0 30 0.2844 0.5250 0.2844
No log 2.1333 32 0.2948 0.5193 0.2948
No log 2.2667 34 0.2802 0.375 0.2802
No log 2.4 36 0.2657 0.3297 0.2657
No log 2.5333 38 0.2635 0.3258 0.2635
No log 2.6667 40 0.2700 0.3347 0.2700
No log 2.8 42 0.2862 0.3299 0.2862
No log 2.9333 44 0.3057 0.3666 0.3057
No log 3.0667 46 0.3164 0.4048 0.3164
No log 3.2 48 0.3074 0.3977 0.3074
No log 3.3333 50 0.2918 0.3729 0.2918
No log 3.4667 52 0.2907 0.4232 0.2907
No log 3.6 54 0.2835 0.4066 0.2835
No log 3.7333 56 0.2768 0.3894 0.2768
No log 3.8667 58 0.2866 0.4187 0.2866
No log 4.0 60 0.3010 0.4186 0.3010
No log 4.1333 62 0.3104 0.4066 0.3104
No log 4.2667 64 0.2965 0.3773 0.2965
No log 4.4 66 0.2718 0.3398 0.2718
No log 4.5333 68 0.2585 0.3586 0.2585
No log 4.6667 70 0.2610 0.3481 0.2610
No log 4.8 72 0.2741 0.3533 0.2741
No log 4.9333 74 0.2979 0.4156 0.2979
No log 5.0667 76 0.3007 0.4214 0.3007
No log 5.2 78 0.2959 0.3980 0.2959
No log 5.3333 80 0.2864 0.3369 0.2864
No log 5.4667 82 0.2716 0.3458 0.2716
No log 5.6 84 0.2611 0.3307 0.2611
No log 5.7333 86 0.2596 0.3373 0.2596
No log 5.8667 88 0.2680 0.3583 0.2680
No log 6.0 90 0.2914 0.3969 0.2914
No log 6.1333 92 0.3171 0.4789 0.3171
No log 6.2667 94 0.3159 0.5187 0.3159
No log 6.4 96 0.3015 0.4948 0.3015
No log 6.5333 98 0.2857 0.4598 0.2857
No log 6.6667 100 0.2723 0.4572 0.2723
No log 6.8 102 0.2683 0.4454 0.2683
No log 6.9333 104 0.2753 0.4473 0.2753
No log 7.0667 106 0.2829 0.4644 0.2829
No log 7.2 108 0.2793 0.4531 0.2793
No log 7.3333 110 0.2787 0.4531 0.2787
No log 7.4667 112 0.2754 0.4531 0.2754
No log 7.6 114 0.2767 0.4600 0.2767
No log 7.7333 116 0.2854 0.4880 0.2854
No log 7.8667 118 0.2920 0.5047 0.2920
No log 8.0 120 0.2949 0.5212 0.2949
No log 8.1333 122 0.2935 0.5204 0.2935
No log 8.2667 124 0.2888 0.5040 0.2888
No log 8.4 126 0.2843 0.4986 0.2843
No log 8.5333 128 0.2811 0.5017 0.2811
No log 8.6667 130 0.2800 0.5017 0.2800
No log 8.8 132 0.2856 0.5125 0.2856
No log 8.9333 134 0.2900 0.4986 0.2900
No log 9.0667 136 0.2898 0.4986 0.2898
No log 9.2 138 0.2908 0.5040 0.2908
No log 9.3333 140 0.2914 0.5095 0.2914
No log 9.4667 142 0.2916 0.5047 0.2916
No log 9.6 144 0.2901 0.4986 0.2901
No log 9.7333 146 0.2879 0.4931 0.2879
No log 9.8667 148 0.2871 0.4931 0.2871
No log 10.0 150 0.2868 0.4931 0.2868

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/arabert_cross_relevance_task2_fold3

Finetuned
(2941)
this model