arabert_cross_relevance_task1_fold3

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2800
  • Qwk: 0.4057
  • Mse: 0.2800

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.1333 2 0.4841 0.2229 0.4841
No log 0.2667 4 0.4548 0.1951 0.4548
No log 0.4 6 0.3736 0.2470 0.3736
No log 0.5333 8 0.3640 0.2129 0.3640
No log 0.6667 10 0.3899 0.1839 0.3899
No log 0.8 12 0.3649 0.1986 0.3649
No log 0.9333 14 0.3192 0.3366 0.3192
No log 1.0667 16 0.3134 0.3522 0.3134
No log 1.2 18 0.2989 0.3399 0.2989
No log 1.3333 20 0.3038 0.3248 0.3038
No log 1.4667 22 0.3097 0.3239 0.3097
No log 1.6 24 0.2998 0.3258 0.2998
No log 1.7333 26 0.2810 0.3516 0.2810
No log 1.8667 28 0.2789 0.3522 0.2789
No log 2.0 30 0.2800 0.3509 0.2800
No log 2.1333 32 0.2906 0.3375 0.2906
No log 2.2667 34 0.3124 0.2959 0.3124
No log 2.4 36 0.3211 0.3784 0.3211
No log 2.5333 38 0.3001 0.3428 0.3001
No log 2.6667 40 0.2852 0.3575 0.2852
No log 2.8 42 0.2865 0.3529 0.2865
No log 2.9333 44 0.2806 0.3509 0.2806
No log 3.0667 46 0.2874 0.3391 0.2874
No log 3.2 48 0.3047 0.3615 0.3047
No log 3.3333 50 0.3111 0.3705 0.3111
No log 3.4667 52 0.3016 0.3428 0.3016
No log 3.6 54 0.2849 0.3391 0.2849
No log 3.7333 56 0.2726 0.3502 0.2726
No log 3.8667 58 0.2737 0.3515 0.2737
No log 4.0 60 0.2771 0.3515 0.2771
No log 4.1333 62 0.2716 0.3509 0.2716
No log 4.2667 64 0.2745 0.3480 0.2745
No log 4.4 66 0.2815 0.3431 0.2815
No log 4.5333 68 0.2772 0.3599 0.2772
No log 4.6667 70 0.2685 0.3637 0.2685
No log 4.8 72 0.2627 0.3536 0.2627
No log 4.9333 74 0.2621 0.3549 0.2621
No log 5.0667 76 0.2604 0.3640 0.2604
No log 5.2 78 0.2644 0.3909 0.2644
No log 5.3333 80 0.2834 0.4063 0.2834
No log 5.4667 82 0.2855 0.3857 0.2855
No log 5.6 84 0.2777 0.3709 0.2777
No log 5.7333 86 0.2703 0.3543 0.2703
No log 5.8667 88 0.2731 0.3495 0.2731
No log 6.0 90 0.2756 0.3509 0.2756
No log 6.1333 92 0.2782 0.3538 0.2782
No log 6.2667 94 0.2856 0.3720 0.2856
No log 6.4 96 0.2950 0.4113 0.2950
No log 6.5333 98 0.3066 0.4735 0.3066
No log 6.6667 100 0.2982 0.4566 0.2982
No log 6.8 102 0.2915 0.4196 0.2915
No log 6.9333 104 0.2806 0.3842 0.2806
No log 7.0667 106 0.2757 0.3868 0.2757
No log 7.2 108 0.2790 0.3895 0.2790
No log 7.3333 110 0.2776 0.3868 0.2776
No log 7.4667 112 0.2706 0.3605 0.2706
No log 7.6 114 0.2683 0.3518 0.2683
No log 7.7333 116 0.2688 0.3518 0.2688
No log 7.8667 118 0.2706 0.3617 0.2706
No log 8.0 120 0.2740 0.3712 0.2740
No log 8.1333 122 0.2770 0.3712 0.2770
No log 8.2667 124 0.2813 0.3756 0.2813
No log 8.4 126 0.2862 0.3730 0.2862
No log 8.5333 128 0.2926 0.4157 0.2926
No log 8.6667 130 0.2956 0.4209 0.2956
No log 8.8 132 0.2928 0.4211 0.2928
No log 8.9333 134 0.2870 0.4052 0.2870
No log 9.0667 136 0.2834 0.3945 0.2834
No log 9.2 138 0.2828 0.4002 0.2828
No log 9.3333 140 0.2815 0.3952 0.2815
No log 9.4667 142 0.2814 0.4057 0.2814
No log 9.6 144 0.2807 0.4057 0.2807
No log 9.7333 146 0.2801 0.4057 0.2801
No log 9.8667 148 0.2799 0.4057 0.2799
No log 10.0 150 0.2800 0.4057 0.2800

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/arabert_cross_relevance_task1_fold3

Finetuned
(4206)
this model