|
--- |
|
base_model: aubmindlab/bert-base-arabertv02 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: arabert_baseline_style_task5_fold0 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# arabert_baseline_style_task5_fold0 |
|
|
|
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6425 |
|
- Qwk: 0.6667 |
|
- Mse: 0.6425 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |
|
|:-------------:|:------:|:----:|:---------------:|:------:|:------:| |
|
| No log | 0.3333 | 2 | 1.7460 | 0.1985 | 1.7460 | |
|
| No log | 0.6667 | 4 | 1.5870 | 0.0 | 1.5870 | |
|
| No log | 1.0 | 6 | 1.4018 | 0.0 | 1.4018 | |
|
| No log | 1.3333 | 8 | 1.2599 | 0.0 | 1.2599 | |
|
| No log | 1.6667 | 10 | 1.2011 | 0.1294 | 1.2011 | |
|
| No log | 2.0 | 12 | 1.1822 | 0.2077 | 1.1822 | |
|
| No log | 2.3333 | 14 | 1.1032 | 0.3860 | 1.1032 | |
|
| No log | 2.6667 | 16 | 1.0087 | 0.3860 | 1.0087 | |
|
| No log | 3.0 | 18 | 0.9075 | 0.5652 | 0.9075 | |
|
| No log | 3.3333 | 20 | 0.8395 | 0.4898 | 0.8395 | |
|
| No log | 3.6667 | 22 | 0.7981 | 0.4898 | 0.7981 | |
|
| No log | 4.0 | 24 | 0.7479 | 0.5455 | 0.7479 | |
|
| No log | 4.3333 | 26 | 0.7093 | 0.5455 | 0.7093 | |
|
| No log | 4.6667 | 28 | 0.6855 | 0.6222 | 0.6855 | |
|
| No log | 5.0 | 30 | 0.6929 | 0.5614 | 0.6929 | |
|
| No log | 5.3333 | 32 | 0.7079 | 0.4813 | 0.7079 | |
|
| No log | 5.6667 | 34 | 0.6704 | 0.6222 | 0.6704 | |
|
| No log | 6.0 | 36 | 0.6443 | 0.5946 | 0.6443 | |
|
| No log | 6.3333 | 38 | 0.6496 | 0.5946 | 0.6496 | |
|
| No log | 6.6667 | 40 | 0.6556 | 0.6119 | 0.6556 | |
|
| No log | 7.0 | 42 | 0.6527 | 0.5946 | 0.6527 | |
|
| No log | 7.3333 | 44 | 0.6454 | 0.5946 | 0.6454 | |
|
| No log | 7.6667 | 46 | 0.6421 | 0.6186 | 0.6421 | |
|
| No log | 8.0 | 48 | 0.6433 | 0.6186 | 0.6433 | |
|
| No log | 8.3333 | 50 | 0.6419 | 0.6352 | 0.6419 | |
|
| No log | 8.6667 | 52 | 0.6369 | 0.6352 | 0.6369 | |
|
| No log | 9.0 | 54 | 0.6384 | 0.6667 | 0.6384 | |
|
| No log | 9.3333 | 56 | 0.6431 | 0.6667 | 0.6431 | |
|
| No log | 9.6667 | 58 | 0.6432 | 0.6667 | 0.6432 | |
|
| No log | 10.0 | 60 | 0.6425 | 0.6667 | 0.6425 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|