Uploaded model

  • Developed by: TethysAI
  • License: apache-2.0
  • Finetuned from model : Qwen/Qwen2.5-3B-Instruct

Follow the below structure to call the model:

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("saishshinde15/TethysAI_Base_Reasoning")
model = AutoModelForCausalLM.from_pretrained("saishshinde15/TethysAI_Base_Reasoning")

# Prepare input prompt using chat template
SYSTEM_PROMPT = """
Respond in the following format:
<reasoning>
...
</reasoning>
<answer>
...
</answer>
"""
text = tokenizer.apply_chat_template([
    {"role": "system", "content": SYSTEM_PROMPT},
    {"role": "user", "content": "What is 2x+3=4"},
], tokenize=False, add_generation_prompt=True)

# Tokenize input
input_ids = tokenizer(text, return_tensors="pt").input_ids

# Move to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
input_ids = input_ids.to(device)

# Generate response
# The line below caused the error as the loaded model doesn't have the attribute 'fast_generate'
# output_ids = model.generate(
#     input_ids,
#     temperature=0.8,
#     top_p=0.95,
#     max_length=1024,  # Equivalent to max_tokens
# )

# Instead, use this
from vllm import SamplingParams
sampling_params = SamplingParams(
    temperature=0.8,
    top_p=0.95,
    max_tokens=1024,
)
output = model.generate(
    input_ids,
    sampling_params=sampling_params,
)

# Decode and print output
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(output_text)
Fast inference
pip install transformers vllm vllm[lora] torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

text = tokenizer.apply_chat_template([
    {"role" : "system", "content" : SYSTEM_PROMPT},
    {"role" : "user", "content" : "What is 2x+3=4"},
], tokenize = False, add_generation_prompt = True)

from vllm import SamplingParams
sampling_params = SamplingParams(
    temperature = 0.8,
    top_p = 0.95,
    max_tokens = 1024,
)
output = model.fast_generate(
    text,
    sampling_params = sampling_params,
    lora_request = model.load_lora("grpo_saved_lora"),
)[0].outputs[0].text

output
Downloads last month
20
Safetensors
Model size
3.09B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for saishshinde15/TethysAI_Base_Reasoning

Base model

Qwen/Qwen2.5-3B
Finetuned
(151)
this model
Quantizations
1 model