saeedehj's picture
Update README.md
b3115c0
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: led-base-16384-finetune-xsum
    results: []

led-base-16384-finetune-xsum

This model is a fine-tuned version of allenai/led-base-16384 on the xsum dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3325
  • Rouge1: 31.3157
  • Rouge2: 9.2183
  • Rougel: 23.7641
  • Rougelsum: 23.8202
  • Gen Len: 19.89

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 125 2.6311 32.5653 10.8601 25.3811 25.5187 19.84
No log 2.0 250 2.7544 31.6321 9.9595 25.0264 25.0779 19.85
No log 3.0 375 2.8261 32.0246 10.1415 25.2121 25.2632 19.89
0.1515 4.0 500 2.9240 31.6961 11.1892 25.0684 25.1019 19.92
0.1515 5.0 625 3.0229 31.1022 9.294 24.3075 24.309 19.9
0.1515 6.0 750 3.0900 31.7063 10.2344 25.1885 25.3359 19.89
0.1515 7.0 875 3.0958 31.6973 10.2856 25.5433 25.6242 19.91
0.0437 8.0 1000 3.1248 30.9445 10.3904 24.0861 24.109 19.91
0.0437 9.0 1125 3.1542 31.4694 9.4087 24.3248 24.4039 19.97
0.0437 10.0 1250 3.1986 30.428 9.6657 24.2568 24.4035 19.86
0.0437 11.0 1375 3.2040 32.3325 9.8754 25.117 25.1563 19.95
0.0229 12.0 1500 3.2044 30.8435 8.6959 23.4129 23.5211 19.99
0.0229 13.0 1625 3.2419 31.8807 9.6734 24.5748 24.6672 19.96
0.0229 14.0 1750 3.2926 31.8181 9.5238 24.3606 24.4569 19.88
0.0229 15.0 1875 3.2935 30.7551 8.9042 23.9581 24.1074 19.98
0.0107 16.0 2000 3.3219 31.3919 9.3308 24.1432 24.2162 19.93
0.0107 17.0 2125 3.3167 31.7918 9.4813 23.9672 24.0244 19.9
0.0107 18.0 2250 3.3281 31.0624 9.3608 23.6247 23.6658 19.89
0.0107 19.0 2375 3.3248 31.7832 9.5257 23.9738 24.0255 19.96
0.0063 20.0 2500 3.3325 31.3157 9.2183 23.7641 23.8202 19.89

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3