metadata
license: apache-2.0
library_name: pytorch
xor
A multi-layer perceptron (MLP) that performs the XOR logical computation. It generates the following truth table:
A | B | C |
---|---|---|
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
It takes as input two column vectors of zeros and ones. It outputs a single column vector of zeros and ones.
Code: https://github.com/sambitmukherjee/handson-ml3-pytorch/blob/main/chapter10/xor.ipynb
Usage
import torch
import torch.nn as nn
from huggingface_hub import PyTorchModelHubMixin
# Let's create two column vectors containing `0`s and `1`s.
batch = {'a': torch.tensor([[0.], [0.], [1.], [1.]]), 'b': torch.tensor([[0.], [1.], [0.], [1.]])}
class XOR(nn.Module, PyTorchModelHubMixin):
def __init__(self):
super().__init__()
self.layer0_weight = torch.tensor([[1., 1.], [1., 1.]])
self.layer0_bias = torch.tensor([-1.5, -0.5])
self.layer1_weight = torch.tensor([[-1.], [1.]])
self.layer1_bias = torch.tensor([-0.5])
def heaviside(self, x):
return (x >= 0).float()
def forward(self, x):
inputs = torch.cat([x['a'], x['b']], dim=1)
out = self.heaviside(inputs @ self.layer0_weight + self.layer0_bias)
out = self.heaviside(out @ self.layer1_weight + self.layer1_bias)
return out
# Instantiate:
logical_xor = XOR.from_pretrained("sadhaklal/xor")
# Forward pass:
output = logical_xor(batch)
print(output)