layoutlm-funsd / README.md
sachin18's picture
End of training
4dfa76b verified
|
raw
history blame
9.34 kB
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6806
  • Answer: {'precision': 0.709211986681465, 'recall': 0.7898640296662547, 'f1': 0.7473684210526316, 'number': 809}
  • Header: {'precision': 0.35537190082644626, 'recall': 0.36134453781512604, 'f1': 0.3583333333333333, 'number': 119}
  • Question: {'precision': 0.7920792079207921, 'recall': 0.8262910798122066, 'f1': 0.8088235294117647, 'number': 1065}
  • Overall Precision: 0.7323
  • Overall Recall: 0.7837
  • Overall F1: 0.7571
  • Overall Accuracy: 0.8125

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.7526 1.0 10 1.5590 {'precision': 0.032426778242677826, 'recall': 0.038318912237330034, 'f1': 0.03512747875354107, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.23852295409181637, 'recall': 0.2244131455399061, 'f1': 0.2312530237058539, 'number': 1065} 0.1379 0.1355 0.1367 0.3812
1.4179 2.0 20 1.2477 {'precision': 0.16770186335403728, 'recall': 0.1668726823238566, 'f1': 0.16728624535315983, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.4325309992706054, 'recall': 0.5568075117370892, 'f1': 0.486863711001642, 'number': 1065} 0.3343 0.3653 0.3491 0.5813
1.0864 3.0 30 0.9440 {'precision': 0.5470383275261324, 'recall': 0.5822002472187886, 'f1': 0.5640718562874251, 'number': 809} {'precision': 0.0425531914893617, 'recall': 0.01680672268907563, 'f1': 0.024096385542168672, 'number': 119} {'precision': 0.5717665615141956, 'recall': 0.6807511737089202, 'f1': 0.6215173596228033, 'number': 1065} 0.5506 0.6011 0.5747 0.7225
0.8353 4.0 40 0.7733 {'precision': 0.5964360587002097, 'recall': 0.7033374536464772, 'f1': 0.6454906409529211, 'number': 809} {'precision': 0.19718309859154928, 'recall': 0.11764705882352941, 'f1': 0.14736842105263157, 'number': 119} {'precision': 0.654468085106383, 'recall': 0.7220657276995305, 'f1': 0.6866071428571429, 'number': 1065} 0.6145 0.6784 0.6449 0.7634
0.6716 5.0 50 0.7154 {'precision': 0.6294691224268689, 'recall': 0.7181705809641533, 'f1': 0.6709006928406466, 'number': 809} {'precision': 0.24210526315789474, 'recall': 0.19327731092436976, 'f1': 0.2149532710280374, 'number': 119} {'precision': 0.6755663430420712, 'recall': 0.784037558685446, 'f1': 0.7257714037375055, 'number': 1065} 0.6384 0.7220 0.6777 0.7796
0.5748 6.0 60 0.6924 {'precision': 0.6378269617706237, 'recall': 0.7836835599505563, 'f1': 0.7032723239046034, 'number': 809} {'precision': 0.3493975903614458, 'recall': 0.24369747899159663, 'f1': 0.2871287128712871, 'number': 119} {'precision': 0.7334558823529411, 'recall': 0.7492957746478873, 'f1': 0.7412912215513237, 'number': 1065} 0.6748 0.7331 0.7027 0.7798
0.5 7.0 70 0.6652 {'precision': 0.665258711721225, 'recall': 0.7787391841779975, 'f1': 0.7175398633257404, 'number': 809} {'precision': 0.2641509433962264, 'recall': 0.23529411764705882, 'f1': 0.24888888888888888, 'number': 119} {'precision': 0.7253218884120172, 'recall': 0.7934272300469484, 'f1': 0.7578475336322871, 'number': 1065} 0.6776 0.7541 0.7138 0.7942
0.4449 8.0 80 0.6592 {'precision': 0.6754201680672269, 'recall': 0.7948084054388134, 'f1': 0.730266893810335, 'number': 809} {'precision': 0.25862068965517243, 'recall': 0.25210084033613445, 'f1': 0.25531914893617025, 'number': 119} {'precision': 0.7574692442882249, 'recall': 0.8093896713615023, 'f1': 0.7825692237857468, 'number': 1065} 0.6958 0.7702 0.7311 0.8050
0.3916 9.0 90 0.6470 {'precision': 0.7090301003344481, 'recall': 0.7861557478368356, 'f1': 0.7456037514654162, 'number': 809} {'precision': 0.3157894736842105, 'recall': 0.3025210084033613, 'f1': 0.30901287553648066, 'number': 119} {'precision': 0.762071992976295, 'recall': 0.8150234741784037, 'f1': 0.7876588021778583, 'number': 1065} 0.7163 0.7727 0.7434 0.8102
0.3807 10.0 100 0.6552 {'precision': 0.6869009584664537, 'recall': 0.7972805933250927, 'f1': 0.7379862700228833, 'number': 809} {'precision': 0.2972972972972973, 'recall': 0.2773109243697479, 'f1': 0.28695652173913044, 'number': 119} {'precision': 0.7832422586520947, 'recall': 0.8075117370892019, 'f1': 0.7951918631530283, 'number': 1065} 0.7160 0.7717 0.7428 0.8129
0.328 11.0 110 0.6710 {'precision': 0.7014428412874584, 'recall': 0.7812113720642769, 'f1': 0.7391812865497076, 'number': 809} {'precision': 0.3037037037037037, 'recall': 0.3445378151260504, 'f1': 0.3228346456692913, 'number': 119} {'precision': 0.7671589921807124, 'recall': 0.8291079812206573, 'f1': 0.7969314079422383, 'number': 1065} 0.7115 0.7807 0.7445 0.8076
0.3111 12.0 120 0.6772 {'precision': 0.6972972972972973, 'recall': 0.7972805933250927, 'f1': 0.7439446366782007, 'number': 809} {'precision': 0.34234234234234234, 'recall': 0.31932773109243695, 'f1': 0.33043478260869563, 'number': 119} {'precision': 0.801477377654663, 'recall': 0.8150234741784037, 'f1': 0.8081936685288641, 'number': 1065} 0.7319 0.7782 0.7544 0.8120
0.2936 13.0 130 0.6751 {'precision': 0.7136563876651982, 'recall': 0.8009888751545118, 'f1': 0.7548048922539313, 'number': 809} {'precision': 0.33858267716535434, 'recall': 0.36134453781512604, 'f1': 0.34959349593495936, 'number': 119} {'precision': 0.7894736842105263, 'recall': 0.8309859154929577, 'f1': 0.8096980786825252, 'number': 1065} 0.7310 0.7908 0.7597 0.8126
0.2719 14.0 140 0.6794 {'precision': 0.7081021087680355, 'recall': 0.788627935723115, 'f1': 0.7461988304093568, 'number': 809} {'precision': 0.3524590163934426, 'recall': 0.36134453781512604, 'f1': 0.35684647302904565, 'number': 119} {'precision': 0.794755877034358, 'recall': 0.8253521126760563, 'f1': 0.809765085214187, 'number': 1065} 0.7327 0.7827 0.7569 0.8116
0.2776 15.0 150 0.6806 {'precision': 0.709211986681465, 'recall': 0.7898640296662547, 'f1': 0.7473684210526316, 'number': 809} {'precision': 0.35537190082644626, 'recall': 0.36134453781512604, 'f1': 0.3583333333333333, 'number': 119} {'precision': 0.7920792079207921, 'recall': 0.8262910798122066, 'f1': 0.8088235294117647, 'number': 1065} 0.7323 0.7837 0.7571 0.8125

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1