layoutlm-funsd / README.md
sachin18's picture
End of training
260497c verified
|
raw
history blame
9.39 kB
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7055
  • Answer: {'precision': 0.7035830618892508, 'recall': 0.8009888751545118, 'f1': 0.7491329479768787, 'number': 809}
  • Header: {'precision': 0.34146341463414637, 'recall': 0.35294117647058826, 'f1': 0.34710743801652894, 'number': 119}
  • Question: {'precision': 0.7775816416593115, 'recall': 0.8272300469483568, 'f1': 0.8016378525932666, 'number': 1065}
  • Overall Precision: 0.7216
  • Overall Recall: 0.7883
  • Overall F1: 0.7535
  • Overall Accuracy: 0.8028

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8301 1.0 10 1.5849 {'precision': 0.008086253369272238, 'recall': 0.007416563658838072, 'f1': 0.007736943907156674, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.22358346094946402, 'recall': 0.13708920187793427, 'f1': 0.16996507566938301, 'number': 1065} 0.1090 0.0763 0.0897 0.3514
1.4704 2.0 20 1.2710 {'precision': 0.2843881856540084, 'recall': 0.41656365883807167, 'f1': 0.3380140421263791, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.3906474820143885, 'recall': 0.5098591549295775, 'f1': 0.44236252545824845, 'number': 1065} 0.3408 0.4415 0.3847 0.6020
1.1259 3.0 30 0.9451 {'precision': 0.47373447946513847, 'recall': 0.6131025957972805, 'f1': 0.5344827586206896, 'number': 809} {'precision': 0.0625, 'recall': 0.025210084033613446, 'f1': 0.035928143712574856, 'number': 119} {'precision': 0.5223654283548143, 'recall': 0.6469483568075117, 'f1': 0.5780201342281879, 'number': 1065} 0.4921 0.5961 0.5391 0.7000
0.8549 4.0 40 0.7891 {'precision': 0.5652985074626866, 'recall': 0.7490729295426453, 'f1': 0.6443381180223287, 'number': 809} {'precision': 0.20833333333333334, 'recall': 0.12605042016806722, 'f1': 0.15706806282722513, 'number': 119} {'precision': 0.6485013623978202, 'recall': 0.6704225352112676, 'f1': 0.6592797783933518, 'number': 1065} 0.5947 0.6698 0.6300 0.7562
0.6872 5.0 50 0.7203 {'precision': 0.6393617021276595, 'recall': 0.7428924598269468, 'f1': 0.6872498570611778, 'number': 809} {'precision': 0.358974358974359, 'recall': 0.23529411764705882, 'f1': 0.28426395939086296, 'number': 119} {'precision': 0.6650563607085346, 'recall': 0.7755868544600939, 'f1': 0.716081491114001, 'number': 1065} 0.6438 0.7301 0.6842 0.7798
0.5872 6.0 60 0.6889 {'precision': 0.6236559139784946, 'recall': 0.788627935723115, 'f1': 0.6965065502183407, 'number': 809} {'precision': 0.35802469135802467, 'recall': 0.24369747899159663, 'f1': 0.29000000000000004, 'number': 119} {'precision': 0.7190517998244074, 'recall': 0.7690140845070422, 'f1': 0.7431941923774955, 'number': 1065} 0.6625 0.7456 0.7016 0.7797
0.5065 7.0 70 0.6618 {'precision': 0.681283422459893, 'recall': 0.7873918417799752, 'f1': 0.7305045871559632, 'number': 809} {'precision': 0.336734693877551, 'recall': 0.2773109243697479, 'f1': 0.30414746543778803, 'number': 119} {'precision': 0.748471615720524, 'recall': 0.8046948356807512, 'f1': 0.7755656108597285, 'number': 1065} 0.7011 0.7662 0.7322 0.7934
0.4527 8.0 80 0.6639 {'precision': 0.671161825726141, 'recall': 0.799752781211372, 'f1': 0.7298364354201917, 'number': 809} {'precision': 0.3170731707317073, 'recall': 0.3277310924369748, 'f1': 0.32231404958677684, 'number': 119} {'precision': 0.7473867595818815, 'recall': 0.8056338028169014, 'f1': 0.7754179846362403, 'number': 1065} 0.6908 0.7747 0.7304 0.7955
0.3952 9.0 90 0.6666 {'precision': 0.686358754027927, 'recall': 0.7898640296662547, 'f1': 0.7344827586206897, 'number': 809} {'precision': 0.3523809523809524, 'recall': 0.31092436974789917, 'f1': 0.33035714285714285, 'number': 119} {'precision': 0.7519247219846023, 'recall': 0.8253521126760563, 'f1': 0.7869292748433303, 'number': 1065} 0.7052 0.7802 0.7408 0.7969
0.3863 10.0 100 0.6806 {'precision': 0.6849894291754757, 'recall': 0.8009888751545118, 'f1': 0.7384615384615385, 'number': 809} {'precision': 0.3333333333333333, 'recall': 0.31932773109243695, 'f1': 0.3261802575107296, 'number': 119} {'precision': 0.7670157068062827, 'recall': 0.8253521126760563, 'f1': 0.7951153324287653, 'number': 1065} 0.7094 0.7852 0.7454 0.7985
0.3307 11.0 110 0.6859 {'precision': 0.6938775510204082, 'recall': 0.7985166872682324, 'f1': 0.7425287356321839, 'number': 809} {'precision': 0.3416666666666667, 'recall': 0.3445378151260504, 'f1': 0.34309623430962344, 'number': 119} {'precision': 0.764402407566638, 'recall': 0.8347417840375587, 'f1': 0.7980251346499103, 'number': 1065} 0.7118 0.7908 0.7492 0.8004
0.3126 12.0 120 0.6896 {'precision': 0.697198275862069, 'recall': 0.799752781211372, 'f1': 0.7449625791594704, 'number': 809} {'precision': 0.36283185840707965, 'recall': 0.3445378151260504, 'f1': 0.35344827586206895, 'number': 119} {'precision': 0.7788632326820604, 'recall': 0.8234741784037559, 'f1': 0.8005476951163851, 'number': 1065} 0.7222 0.7852 0.7524 0.8012
0.2979 13.0 130 0.6997 {'precision': 0.6992399565689468, 'recall': 0.796044499381953, 'f1': 0.7445086705202313, 'number': 809} {'precision': 0.3416666666666667, 'recall': 0.3445378151260504, 'f1': 0.34309623430962344, 'number': 119} {'precision': 0.7763157894736842, 'recall': 0.8309859154929577, 'f1': 0.802721088435374, 'number': 1065} 0.7199 0.7878 0.7523 0.8007
0.2712 14.0 140 0.7039 {'precision': 0.7083333333333334, 'recall': 0.7985166872682324, 'f1': 0.7507263219058687, 'number': 809} {'precision': 0.336, 'recall': 0.35294117647058826, 'f1': 0.3442622950819672, 'number': 119} {'precision': 0.7771929824561403, 'recall': 0.831924882629108, 'f1': 0.8036281179138323, 'number': 1065} 0.7230 0.7898 0.7549 0.8028
0.2738 15.0 150 0.7055 {'precision': 0.7035830618892508, 'recall': 0.8009888751545118, 'f1': 0.7491329479768787, 'number': 809} {'precision': 0.34146341463414637, 'recall': 0.35294117647058826, 'f1': 0.34710743801652894, 'number': 119} {'precision': 0.7775816416593115, 'recall': 0.8272300469483568, 'f1': 0.8016378525932666, 'number': 1065} 0.7216 0.7883 0.7535 0.8028

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1