sacculifer's picture
Update README.md
3d419ef
metadata
tags:
  - generated_from_keras_callback
model-index:
  - name: tmp_isorz6_
    results: []

Tweets disaster detection model

This model was trained from part of Disaster Tweet Corpus 2020 (Analysis of Filtering Models for Disaster-Related Tweets, Wiegmann,M. et al, 2020) dataset It achieves the following results on the evaluation set:

  • Train Loss: 0.1400
  • Train Accuracy: 0.9516
  • Validation Loss: 0.1995
  • Validation Accuracy: 0.9324
  • Epoch: 2

Model description

Labels
not disaster --- 0
disaster --- 1

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer:
    batch_size = 16
    num_epochs = 5
    batches_per_epoch = len(tokenized_tweet["train"])//batch_size
    total_train_steps = int(batches_per_epoch * num_epochs)
    optimizer, schedule = create_optimizer(init_lr=2e-5, num_warmup_steps=0, num_train_steps=total_train_steps)
  • training_precision: float32

Framework versions

  • Transformers 4.16.2
  • TensorFlow 2.9.2
  • Datasets 2.4.0
  • Tokenizers 0.12.1

How to use it

from transformers import AutoTokenizer, TFAutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("sacculifer/dimbat_disaster_distilbert")

model = TFAutoModelForSequenceClassification.from_pretrained("sacculifer/dimbat_disaster_distilbert")