metadata
license: mit
language:
- am
- ar
- hy
- eu
- bn
- bs
- bg
- my
- hr
- ca
- cs
- da
- nl
- en
- et
- fi
- fr
- ka
- de
- el
- gu
- ht
- iw
- hi
- hu
- is
- in
- it
- ja
- kn
- km
- ko
- lo
- lv
- lt
- ml
- mr
- ne
- 'no'
- or
- pa
- ps
- fa
- pl
- pt
- ro
- ru
- sr
- zh
- sd
- si
- sk
- sl
- es
- sv
- tl
- ta
- te
- th
- tr
- uk
- ur
- ug
- vi
- cy
tags:
- generated_from_trainer
model-index:
- name: verdict-classifier-en
results:
- task:
type: text-classification
name: Verdict Classification
widget:
- One might think that this is true, but it's taken out of context.
Multilingual Verdict Classifier
This model is a fine-tuned version of xlm-roberta-base on 1,500 deduplicated multilingual verdicts from Google Fact Check Tools API, translated into 65 languages with the Google Cloud Translation API. It achieves the following results on the evaluation set, being 1,000 such verdicts, but here including duplicates to represent the true distribution:
- Loss: 0.2245
- F1 Macro: 0.8818
- F1 Misinformation: 0.9842
- F1 Factual: 0.9688
- F1 Other: 0.6923
- Prec Macro: 0.8668
- Prec Misinformation: 0.9887
- Prec Factual: 0.9688
- Prec Other: 0.6429
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 30066
- num_epochs: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Misinformation | F1 Factual | F1 Other | Prec Macro | Prec Misinformation | Prec Factual | Prec Other |
---|---|---|---|---|---|---|---|---|---|---|---|
1.0833 | 0.13 | 500 | 0.9331 | 0.3136 | 0.9408 | 0.0 | 0.0 | 0.2961 | 0.8882 | 0.0 | 0.0 |
0.9697 | 0.27 | 1000 | 0.8839 | 0.3136 | 0.9408 | 0.0 | 0.0 | 0.2961 | 0.8882 | 0.0 | 0.0 |
0.9406 | 0.4 | 1500 | 0.7238 | 0.3591 | 0.9394 | 0.0 | 0.1379 | 0.4304 | 0.8911 | 0.0 | 0.4 |
0.9183 | 0.53 | 2000 | 0.6494 | 0.3482 | 0.9336 | 0.0 | 0.1111 | 0.3528 | 0.8916 | 0.0 | 0.1667 |
0.9103 | 0.67 | 2500 | 0.5686 | 0.3621 | 0.9323 | 0.0 | 0.1538 | 0.3643 | 0.8930 | 0.0 | 0.2 |
0.8637 | 0.8 | 3000 | 0.5720 | 0.4233 | 0.9367 | 0.0 | 0.3333 | 0.4036 | 0.9108 | 0.0 | 0.3 |
0.7905 | 0.93 | 3500 | 0.3918 | 0.4721 | 0.9418 | 0.0 | 0.4746 | 0.4402 | 0.9206 | 0.0 | 0.4 |
0.6625 | 1.06 | 4000 | 0.2771 | 0.8225 | 0.9666 | 0.9375 | 0.5634 | 0.7853 | 0.9929 | 0.9375 | 0.4255 |
0.5403 | 1.2 | 4500 | 0.2187 | 0.8083 | 0.9703 | 0.9062 | 0.5484 | 0.7799 | 0.9861 | 0.9062 | 0.4474 |
0.4837 | 1.33 | 5000 | 0.1708 | 0.8138 | 0.9728 | 0.9231 | 0.5455 | 0.7916 | 0.9817 | 0.9091 | 0.4839 |
0.4411 | 1.46 | 5500 | 0.1734 | 0.7873 | 0.9707 | 0.9206 | 0.4706 | 0.7843 | 0.9729 | 0.9355 | 0.4444 |
0.3991 | 1.6 | 6000 | 0.1671 | 0.8131 | 0.9705 | 0.9355 | 0.5333 | 0.7976 | 0.9816 | 0.9667 | 0.4444 |
0.344 | 1.73 | 6500 | 0.1719 | 0.7989 | 0.9749 | 0.8955 | 0.5263 | 0.7667 | 0.9885 | 0.8571 | 0.4545 |
0.3005 | 1.86 | 7000 | 0.1855 | 0.8052 | 0.9704 | 0.9206 | 0.5246 | 0.7839 | 0.9838 | 0.9355 | 0.4324 |
0.2638 | 2.0 | 7500 | 0.1802 | 0.7896 | 0.9752 | 0.9231 | 0.4706 | 0.7777 | 0.9796 | 0.9091 | 0.4444 |
0.2362 | 2.13 | 8000 | 0.1752 | 0.7762 | 0.9718 | 0.8986 | 0.4583 | 0.7578 | 0.9773 | 0.8378 | 0.4583 |
0.2077 | 2.26 | 8500 | 0.1739 | 0.8101 | 0.9740 | 0.9206 | 0.5357 | 0.7953 | 0.9817 | 0.9355 | 0.4688 |
0.1858 | 2.39 | 9000 | 0.1986 | 0.8073 | 0.9716 | 0.9412 | 0.5091 | 0.7748 | 0.9839 | 0.8889 | 0.4516 |
0.1755 | 2.53 | 9500 | 0.1945 | 0.7872 | 0.9754 | 0.9180 | 0.4681 | 0.8049 | 0.9710 | 0.9655 | 0.4783 |
0.1591 | 2.66 | 10000 | 0.2366 | 0.7880 | 0.9692 | 0.8857 | 0.5091 | 0.7504 | 0.9838 | 0.8158 | 0.4516 |
0.1457 | 2.79 | 10500 | 0.2346 | 0.7614 | 0.9671 | 0.8857 | 0.4314 | 0.7334 | 0.9771 | 0.8158 | 0.4074 |
0.1376 | 2.93 | 11000 | 0.2361 | 0.8015 | 0.9729 | 0.9118 | 0.52 | 0.7802 | 0.9795 | 0.8611 | 0.5 |
0.126 | 3.06 | 11500 | 0.2276 | 0.8331 | 0.9751 | 0.9688 | 0.5556 | 0.8168 | 0.9818 | 0.9688 | 0.5 |
0.1133 | 3.19 | 12000 | 0.2972 | 0.8014 | 0.9727 | 0.9231 | 0.5085 | 0.7746 | 0.9861 | 0.9091 | 0.4286 |
0.1114 | 3.33 | 12500 | 0.2600 | 0.8038 | 0.9705 | 0.8955 | 0.5455 | 0.7742 | 0.9816 | 0.8571 | 0.4839 |
0.1099 | 3.46 | 13000 | 0.3221 | 0.8273 | 0.9738 | 0.9118 | 0.5965 | 0.7882 | 0.9884 | 0.8611 | 0.5152 |
0.1116 | 3.59 | 13500 | 0.2277 | 0.8376 | 0.9775 | 0.9231 | 0.6122 | 0.8296 | 0.9797 | 0.9091 | 0.6 |
0.106 | 3.73 | 14000 | 0.2347 | 0.8148 | 0.9774 | 0.8955 | 0.5714 | 0.7997 | 0.9819 | 0.8571 | 0.56 |
0.098 | 3.86 | 14500 | 0.2337 | 0.8487 | 0.9775 | 0.9688 | 0.6 | 0.8418 | 0.9797 | 0.9688 | 0.5769 |
0.0899 | 3.99 | 15000 | 0.2072 | 0.8636 | 0.9820 | 0.9688 | 0.64 | 0.8561 | 0.9842 | 0.9688 | 0.6154 |
0.0855 | 4.12 | 15500 | 0.2385 | 0.8409 | 0.9762 | 0.9538 | 0.5926 | 0.8189 | 0.9840 | 0.9394 | 0.5333 |
0.0864 | 4.26 | 16000 | 0.2780 | 0.8462 | 0.9774 | 0.9688 | 0.5926 | 0.8287 | 0.9841 | 0.9688 | 0.5333 |
0.0784 | 4.39 | 16500 | 0.2668 | 0.8277 | 0.9776 | 0.9524 | 0.5532 | 0.8361 | 0.9754 | 0.9677 | 0.5652 |
0.0923 | 4.52 | 17000 | 0.2893 | 0.8399 | 0.9738 | 0.9254 | 0.6207 | 0.8012 | 0.9884 | 0.8857 | 0.5294 |
0.0794 | 4.66 | 17500 | 0.3101 | 0.8556 | 0.9773 | 0.9688 | 0.6207 | 0.8289 | 0.9885 | 0.9688 | 0.5294 |
0.082 | 4.79 | 18000 | 0.2245 | 0.8818 | 0.9842 | 0.9688 | 0.6923 | 0.8668 | 0.9887 | 0.9688 | 0.6429 |
0.084 | 4.92 | 18500 | 0.2771 | 0.8247 | 0.9797 | 0.8986 | 0.5957 | 0.8102 | 0.9841 | 0.8378 | 0.6087 |
0.0757 | 5.06 | 19000 | 0.2971 | 0.8594 | 0.9773 | 0.9677 | 0.6333 | 0.8388 | 0.9885 | 1.0 | 0.5278 |
0.0709 | 5.19 | 19500 | 0.3601 | 0.8410 | 0.9774 | 0.9688 | 0.5769 | 0.8288 | 0.9819 | 0.9688 | 0.5357 |
0.0698 | 5.32 | 20000 | 0.2772 | 0.8333 | 0.9762 | 0.9524 | 0.5714 | 0.8173 | 0.9840 | 0.9677 | 0.5 |
0.0652 | 5.45 | 20500 | 0.3397 | 0.8186 | 0.9752 | 0.9524 | 0.5283 | 0.8100 | 0.9796 | 0.9677 | 0.4828 |
0.0735 | 5.59 | 21000 | 0.3027 | 0.8412 | 0.9785 | 0.9524 | 0.5926 | 0.8284 | 0.9841 | 0.9677 | 0.5333 |
0.0746 | 5.72 | 21500 | 0.3122 | 0.8384 | 0.9751 | 0.9688 | 0.5714 | 0.8176 | 0.9840 | 0.9688 | 0.5 |
0.0714 | 5.85 | 22000 | 0.2683 | 0.8381 | 0.9787 | 0.9524 | 0.5833 | 0.8429 | 0.9776 | 0.9677 | 0.5833 |
0.073 | 5.99 | 22500 | 0.2436 | 0.8676 | 0.9786 | 0.9841 | 0.64 | 0.8650 | 0.9797 | 1.0 | 0.6154 |
0.0653 | 6.12 | 23000 | 0.3380 | 0.8559 | 0.9761 | 0.9688 | 0.6230 | 0.8243 | 0.9907 | 0.9688 | 0.5135 |
Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu102
- Datasets 1.9.0
- Tokenizers 0.10.2