saad7489's picture
End of training
50e1d0d verified
|
raw
history blame
3.55 kB
metadata
license: other
base_model: nvidia/mit-b0
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-segments-SixrayKnife8-21-2024_saad5
    results: []

segformer-b0-finetuned-segments-SixrayKnife8-21-2024_saad5

This model is a fine-tuned version of nvidia/mit-b0 on the saad7489/SixraygunTest dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2923
  • Mean Iou: 0.8066
  • Mean Accuracy: 0.9078
  • Overall Accuracy: 0.9857
  • Accuracy Bkg: 0.9917
  • Accuracy Knife: 0.8251
  • Accuracy Gun: 0.9065
  • Iou Bkg: 0.9869
  • Iou Knife: 0.7133
  • Iou Gun: 0.7196

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 20
  • eval_batch_size: 20
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Bkg Accuracy Knife Accuracy Gun Iou Bkg Iou Knife Iou Gun
0.8263 5.0 20 0.9552 0.5735 0.8760 0.9414 0.9464 0.8112 0.8703 0.9424 0.4242 0.3540
0.6154 10.0 40 0.6184 0.6297 0.7711 0.9652 0.9800 0.6061 0.7272 0.9657 0.4854 0.4379
0.5165 15.0 60 0.5098 0.6805 0.8233 0.9714 0.9826 0.7375 0.7498 0.9720 0.5691 0.5003
0.4503 20.0 80 0.4561 0.7103 0.8818 0.9735 0.9805 0.7960 0.8690 0.9742 0.5898 0.5670
0.4154 25.0 100 0.3958 0.7526 0.8997 0.9791 0.9852 0.8206 0.8934 0.9800 0.6237 0.6540
0.3659 30.0 120 0.3529 0.7810 0.8969 0.9832 0.9899 0.7932 0.9076 0.9844 0.6814 0.6773
0.3616 35.0 140 0.3253 0.7949 0.8937 0.9848 0.9918 0.8004 0.8889 0.9858 0.6954 0.7035
0.3666 40.0 160 0.3110 0.8018 0.9085 0.9852 0.9911 0.8255 0.9087 0.9863 0.7079 0.7112
0.3082 45.0 180 0.2983 0.8011 0.9037 0.9852 0.9914 0.8195 0.9002 0.9863 0.6982 0.7189
0.3097 50.0 200 0.2923 0.8066 0.9078 0.9857 0.9917 0.8251 0.9065 0.9869 0.7133 0.7196

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1