dardem's picture
Update README.md
b491648
|
raw
history blame
3.11 kB
metadata
language:
  - en
  - fr
  - it
  - pt
tags:
  - formal or informal classification
licenses:
  - cc-by-nc-sa

XLMRoberta-based classifier trained on XFORMAL.

all

precision recall f1-score support
0 0.744912 0.927790 0.826354 108019
1 0.889088 0.645630 0.748048 96845
accuracy 0.794405 204864
macro avg 0.817000 0.786710 0.787201 204864
weighted avg 0.813068 0.794405 0.789337 204864

en

precision recall f1-score support
0 0.800053 0.962981 0.873988 22151
1 0.945106 0.725899 0.821124 19449
accuracy 0.852139 41600
macro avg 0.872579 0.844440 0.847556 41600
weighted avg 0.867869 0.852139 0.849273 41600

fr

precision recall f1-score support
0 0.746709 0.925738 0.826641 21505
1 0.887305 0.650592 0.750731 19327
accuracy 0.795504 40832
macro avg 0.817007 0.788165 0.788686 40832
weighted avg 0.813257 0.795504 0.790711 40832

it

precision recall f1-score support
0 0.721282 0.914669 0.806545 21528
1 0.864887 0.607135 0.713445 19368
accuracy 0.769024 40896
macro avg 0.793084 0.760902 0.759995 40896
weighted avg 0.789292 0.769024 0.762454 40896

pt

precision recall f1-score support
0 0.717546 0.908167 0.801681 21637
1 0.853628 0.599700 0.704481 19323
accuracy 0.762646 40960
macro avg 0.785587 0.753933 0.753081 40960
weighted avg 0.781743 0.762646 0.755826 40960

How to use

from transformers import XLMRobertaTokenizerFast, XLMRobertaForSequenceClassification

# load tokenizer and model weights
tokenizer = XLMRobertaTokenizerFast.from_pretrained('SkolkovoInstitute/xlmr_formality_classifier')
model = XLMRobertaForSequenceClassification.from_pretrained('SkolkovoInstitute/xlmr_formality_classifier')

# prepare the input
batch = tokenizer.encode('ты супер', return_tensors='pt')

# inference
model(batch)

Licensing Information

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

CC BY-NC-SA 4.0