File size: 1,387 Bytes
4cacee8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
from functools import partial
from typing import Sequence
import torch as T
def svd_truncated(mat: T.Tensor, rank: int):
lvecs, svals, rvecs = T.linalg.svd(mat)
return lvecs[:, :rank], svals[:rank], rvecs[:rank, :].T
def ttd(ten: T.Tensor, rank: Sequence[int], noiters: int = 1000,
method: str = 'tsvd') -> Sequence[T.Tensor]:
"""Function ttd implements tensor-train decomposition.
"""
if ten.ndim + 1 != len(rank):
raise ValueError
if rank[0] != 1 or rank[-1] != 1:
raise ValueError
if method == 'svd':
factorize = svd_truncated
elif method == 'tsvd':
factorize = partial(T.svd_lowrank, niter=noiters)
else:
raise ValueError(f'Unknown method: {method}.')
cores = []
shape = ten.shape
# Iterate over shape of cores and split off core from tensor.
for core_shape in zip(rank, shape, rank[1:]):
# breakpoint()
# Matricization of tensor over the first two axes.
mat = ten.reshape(core_shape[0] * core_shape[1], -1)
# Singlular Value Decomposition (SVD).
lvecs, svals, rvecs = factorize(mat, core_shape[2])
# Reshape core and rest of tensor.
core = lvecs * svals[None, :]
core = core.reshape(core_shape)
cores.append(core)
# Use right vectors as a tensor itself.
ten = rvecs.T
return cores
|