memyprokotow
commited on
Commit
•
4cacee8
1
Parent(s):
742939b
Upload TTCompressedBartForConditionGeneration
Browse files- config.json +88 -0
- configuration_bart.py +20 -0
- generation_config.json +12 -0
- linalg.py +45 -0
- modeling_bart.py +61 -0
- modules.py +143 -0
- pytorch_model.bin +3 -0
- util.py +193 -0
config.json
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "morenolq/bart-base-xsum",
|
3 |
+
"activation_dropout": 0.1,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"add_bias_logits": false,
|
6 |
+
"add_final_layer_norm": false,
|
7 |
+
"architectures": [
|
8 |
+
"TTCompressedBartForConditionGeneration"
|
9 |
+
],
|
10 |
+
"attention_dropout": 0.1,
|
11 |
+
"auto_map": {
|
12 |
+
"AutoConfig": "configuration_bart.TTCompressedBartConfig",
|
13 |
+
"AutoModelForSeq2SeqLM": "modeling_bart.TTCompressedBartForConditionGeneration"
|
14 |
+
},
|
15 |
+
"bos_token_id": 0,
|
16 |
+
"classif_dropout": 0.1,
|
17 |
+
"classifier_dropout": 0.0,
|
18 |
+
"d_model": 768,
|
19 |
+
"decoder_attention_heads": 12,
|
20 |
+
"decoder_ffn_dim": 3072,
|
21 |
+
"decoder_layerdrop": 0.0,
|
22 |
+
"decoder_layers": 6,
|
23 |
+
"decoder_start_token_id": 2,
|
24 |
+
"dropout": 0.1,
|
25 |
+
"early_stopping": true,
|
26 |
+
"encoder_attention_heads": 12,
|
27 |
+
"encoder_ffn_dim": 3072,
|
28 |
+
"encoder_layerdrop": 0.0,
|
29 |
+
"encoder_layers": 6,
|
30 |
+
"eos_token_id": 2,
|
31 |
+
"forced_bos_token_id": 0,
|
32 |
+
"forced_eos_token_id": 2,
|
33 |
+
"gradient_checkpointing": false,
|
34 |
+
"id2label": {
|
35 |
+
"0": "LABEL_0",
|
36 |
+
"1": "LABEL_1",
|
37 |
+
"2": "LABEL_2"
|
38 |
+
},
|
39 |
+
"init_std": 0.02,
|
40 |
+
"is_encoder_decoder": true,
|
41 |
+
"label2id": {
|
42 |
+
"LABEL_0": 0,
|
43 |
+
"LABEL_1": 1,
|
44 |
+
"LABEL_2": 2
|
45 |
+
},
|
46 |
+
"max_position_embeddings": 1024,
|
47 |
+
"model_type": "bart",
|
48 |
+
"no_repeat_ngram_size": 3,
|
49 |
+
"normalize_before": false,
|
50 |
+
"normalize_embedding": true,
|
51 |
+
"num_beams": 4,
|
52 |
+
"num_hidden_layers": 6,
|
53 |
+
"pad_token_id": 1,
|
54 |
+
"rank": 60,
|
55 |
+
"scale_embedding": false,
|
56 |
+
"shape_in": [
|
57 |
+
24,
|
58 |
+
32
|
59 |
+
],
|
60 |
+
"shape_out": [
|
61 |
+
64,
|
62 |
+
48
|
63 |
+
],
|
64 |
+
"task_specific_params": {
|
65 |
+
"summarization": {
|
66 |
+
"length_penalty": 1.0,
|
67 |
+
"max_length": 128,
|
68 |
+
"min_length": 12,
|
69 |
+
"num_beams": 4
|
70 |
+
},
|
71 |
+
"summarization_cnn": {
|
72 |
+
"length_penalty": 2.0,
|
73 |
+
"max_length": 142,
|
74 |
+
"min_length": 56,
|
75 |
+
"num_beams": 4
|
76 |
+
},
|
77 |
+
"summarization_xsum": {
|
78 |
+
"length_penalty": 1.0,
|
79 |
+
"max_length": 62,
|
80 |
+
"min_length": 11,
|
81 |
+
"num_beams": 6
|
82 |
+
}
|
83 |
+
},
|
84 |
+
"torch_dtype": "float32",
|
85 |
+
"transformers_version": "4.33.2",
|
86 |
+
"use_cache": true,
|
87 |
+
"vocab_size": 50265
|
88 |
+
}
|
configuration_bart.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
|
3 |
+
from transformers import BartConfig
|
4 |
+
|
5 |
+
|
6 |
+
class TTCompressedBartConfig(BartConfig):
|
7 |
+
"""Class TTCompressedBartConfig defines a configuration for TT-compressed
|
8 |
+
BART. Here, we split shape to input and output shape in order to serialize
|
9 |
+
them to different fields in JSON.
|
10 |
+
"""
|
11 |
+
|
12 |
+
def __init__(self, *args, shape_in: Tuple[int] = (),
|
13 |
+
shape_out: Tuple[int] = (), rank: int = 128, **kwargs):
|
14 |
+
super().__init__(*args, **kwargs)
|
15 |
+
self.shape_in = shape_in
|
16 |
+
self.shape_out = shape_out
|
17 |
+
self.rank = rank
|
18 |
+
|
19 |
+
|
20 |
+
TTCompressedBartConfig.register_for_auto_class()
|
generation_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 0,
|
3 |
+
"decoder_start_token_id": 2,
|
4 |
+
"early_stopping": true,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"forced_bos_token_id": 0,
|
7 |
+
"forced_eos_token_id": 2,
|
8 |
+
"no_repeat_ngram_size": 3,
|
9 |
+
"num_beams": 4,
|
10 |
+
"pad_token_id": 1,
|
11 |
+
"transformers_version": "4.33.2"
|
12 |
+
}
|
linalg.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
from typing import Sequence
|
3 |
+
|
4 |
+
import torch as T
|
5 |
+
|
6 |
+
|
7 |
+
def svd_truncated(mat: T.Tensor, rank: int):
|
8 |
+
lvecs, svals, rvecs = T.linalg.svd(mat)
|
9 |
+
return lvecs[:, :rank], svals[:rank], rvecs[:rank, :].T
|
10 |
+
|
11 |
+
|
12 |
+
def ttd(ten: T.Tensor, rank: Sequence[int], noiters: int = 1000,
|
13 |
+
method: str = 'tsvd') -> Sequence[T.Tensor]:
|
14 |
+
"""Function ttd implements tensor-train decomposition.
|
15 |
+
"""
|
16 |
+
if ten.ndim + 1 != len(rank):
|
17 |
+
raise ValueError
|
18 |
+
if rank[0] != 1 or rank[-1] != 1:
|
19 |
+
raise ValueError
|
20 |
+
|
21 |
+
if method == 'svd':
|
22 |
+
factorize = svd_truncated
|
23 |
+
elif method == 'tsvd':
|
24 |
+
factorize = partial(T.svd_lowrank, niter=noiters)
|
25 |
+
else:
|
26 |
+
raise ValueError(f'Unknown method: {method}.')
|
27 |
+
|
28 |
+
cores = []
|
29 |
+
shape = ten.shape
|
30 |
+
|
31 |
+
# Iterate over shape of cores and split off core from tensor.
|
32 |
+
for core_shape in zip(rank, shape, rank[1:]):
|
33 |
+
# breakpoint()
|
34 |
+
# Matricization of tensor over the first two axes.
|
35 |
+
mat = ten.reshape(core_shape[0] * core_shape[1], -1)
|
36 |
+
# Singlular Value Decomposition (SVD).
|
37 |
+
lvecs, svals, rvecs = factorize(mat, core_shape[2])
|
38 |
+
# Reshape core and rest of tensor.
|
39 |
+
core = lvecs * svals[None, :]
|
40 |
+
core = core.reshape(core_shape)
|
41 |
+
cores.append(core)
|
42 |
+
# Use right vectors as a tensor itself.
|
43 |
+
ten = rvecs.T
|
44 |
+
|
45 |
+
return cores
|
modeling_bart.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""This module uses parts of rut5compressed. It shares the same module
|
2 |
+
structure as model used in neural network compression experiments with
|
3 |
+
rut5compressed.
|
4 |
+
"""
|
5 |
+
|
6 |
+
from functools import partial
|
7 |
+
from typing import Optional, Tuple
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import torch as T
|
11 |
+
from transformers import BartForConditionalGeneration
|
12 |
+
|
13 |
+
from .configuration_bart import TTCompressedBartConfig
|
14 |
+
from .linalg import ttd # noqa: F401 We need this import for HF.
|
15 |
+
from .modules import TTCompressedLinear
|
16 |
+
from .util import compress_linear_tt, map_module
|
17 |
+
|
18 |
+
|
19 |
+
class TTCompressedBartForConditionGeneration(BartForConditionalGeneration):
|
20 |
+
"""Class TTCompressedBartForConditionGeneration defines a BART-based model
|
21 |
+
with compressed linear layers with TT.
|
22 |
+
"""
|
23 |
+
|
24 |
+
LAYERS = r'/(de|en)coder/layers/\d+/fc[12]'
|
25 |
+
|
26 |
+
config_class = TTCompressedBartConfig
|
27 |
+
|
28 |
+
def __init__(self, config: TTCompressedBartConfig,
|
29 |
+
shape: Optional[Tuple[Tuple[int], Tuple[int]]] = None,
|
30 |
+
rank: Optional[int] = None,
|
31 |
+
compress: bool = False):
|
32 |
+
super().__init__(config)
|
33 |
+
|
34 |
+
self.rank = rank or config.rank
|
35 |
+
self.shape = shape
|
36 |
+
if self.shape is None:
|
37 |
+
self.shape = (tuple(self.config.shape_in),
|
38 |
+
tuple(self.config.shape_out))
|
39 |
+
|
40 |
+
compress_fn = partial(compress_linear_tt, rank=self.rank, shape=self.shape)
|
41 |
+
if not compress:
|
42 |
+
compress_fn = self.convert
|
43 |
+
self.model = map_module(self.model, compress_fn, self.LAYERS)
|
44 |
+
|
45 |
+
def convert(self, module: T.nn.Module, path: str) -> T.nn.Module:
|
46 |
+
if isinstance(module, T.nn.Linear):
|
47 |
+
# If in_features < out_features of original linear module then this
|
48 |
+
# is extension mapping; otherwise, it is embedding mapping and we
|
49 |
+
# need to swap input and output shape.
|
50 |
+
in_shape, out_shape = self.shape
|
51 |
+
if module.in_features > module.out_features:
|
52 |
+
out_shape, in_shape = self.shape
|
53 |
+
|
54 |
+
shape = (in_shape, out_shape)
|
55 |
+
bias = module.bias is not None
|
56 |
+
return TTCompressedLinear.from_random(shape, self.rank, bias)
|
57 |
+
return module
|
58 |
+
|
59 |
+
|
60 |
+
TTCompressedBartForConditionGeneration \
|
61 |
+
.register_for_auto_class('AutoModelForSeq2SeqLM')
|
modules.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copied from rut5compressed/nn/modules.py modules of original repository.
|
2 |
+
|
3 |
+
from typing import Optional, Sequence, Tuple
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch as T
|
7 |
+
from opt_einsum import contract_expression
|
8 |
+
from opt_einsum.contract import ContractExpression
|
9 |
+
|
10 |
+
from .linalg import ttd
|
11 |
+
|
12 |
+
|
13 |
+
def make_contraction(shape, rank, batch_size=32,
|
14 |
+
seqlen=512) -> ContractExpression:
|
15 |
+
ndim = len(rank) - 1
|
16 |
+
row_shape, col_shape = shape
|
17 |
+
|
18 |
+
# Generate all contraction indexes.
|
19 |
+
row_ix, col_ix = np.arange(2 * ndim).reshape(2, ndim)
|
20 |
+
rank_ix = 2 * ndim + np.arange(ndim + 1)
|
21 |
+
batch_ix = 4 * ndim # Zero-based index.
|
22 |
+
|
23 |
+
# Order indexes of cores.
|
24 |
+
cores_ix = np.column_stack([rank_ix[:-1], row_ix, col_ix, rank_ix[1:]])
|
25 |
+
cores_shape = zip(rank[:-1], row_shape, col_shape, rank[1:])
|
26 |
+
|
27 |
+
# Order indexes of input (contraction by columns: X G_1 G_2 ... G_d).
|
28 |
+
input_ix = np.insert(row_ix, 0, batch_ix)
|
29 |
+
input_shape = (batch_size * seqlen, ) + row_shape
|
30 |
+
|
31 |
+
# Order indexes of output (append rank indexes as well).
|
32 |
+
output_ix = np.insert(col_ix, 0, batch_ix)
|
33 |
+
output_ix = np.append(output_ix, (rank_ix[0], rank_ix[-1]))
|
34 |
+
|
35 |
+
# Prepare contraction operands.
|
36 |
+
ops = [input_shape, input_ix]
|
37 |
+
for core_ix, core_shape in zip(cores_ix, cores_shape):
|
38 |
+
ops.append(core_shape)
|
39 |
+
ops.append(core_ix)
|
40 |
+
ops.append(output_ix)
|
41 |
+
ops = [tuple(op) for op in ops]
|
42 |
+
|
43 |
+
return contract_expression(*ops)
|
44 |
+
|
45 |
+
|
46 |
+
class TTCompressedLinear(T.nn.Module):
|
47 |
+
"""Class TTCompressedLinear is a layer which represents a weight matrix of
|
48 |
+
linear layer in factorized view as tensor train matrix.
|
49 |
+
|
50 |
+
>>> linear_layer = T.nn.Linear(6, 6)
|
51 |
+
>>> tt_layer = TTCompressedLinear \
|
52 |
+
... .from_linear(linear_layer, rank=2, shape=((2, 3), (3, 2)))
|
53 |
+
"""
|
54 |
+
|
55 |
+
def __init__(self, cores: Sequence[T.Tensor],
|
56 |
+
bias: Optional[T.Tensor] = None):
|
57 |
+
super().__init__()
|
58 |
+
|
59 |
+
for i, core in enumerate(cores):
|
60 |
+
if core.ndim != 4:
|
61 |
+
raise ValueError('Expected number of dimensions of the '
|
62 |
+
f'{i}-th core is 4 but given {cores.ndim}.')
|
63 |
+
|
64 |
+
# Prepare contaction expression.
|
65 |
+
self.rank = (1, ) + tuple(core.shape[3] for core in cores)
|
66 |
+
self.shape = (tuple(core.shape[1] for core in cores),
|
67 |
+
tuple(core.shape[2] for core in cores))
|
68 |
+
self.contact = make_contraction(self.shape, self.rank)
|
69 |
+
|
70 |
+
# TT-matrix is applied on the left. So, this defines number of input
|
71 |
+
# and output features.
|
72 |
+
self.in_features = np.prod(self.shape[0])
|
73 |
+
self.out_features = np.prod(self.shape[1])
|
74 |
+
|
75 |
+
# Create trainable variables.
|
76 |
+
self.cores = T.nn.ParameterList(T.nn.Parameter(core) for core in cores)
|
77 |
+
self.bias = None
|
78 |
+
if bias is not None:
|
79 |
+
if bias.size() != self.out_features:
|
80 |
+
raise ValueError(f'Expected bias size is {self.out_features} '
|
81 |
+
f'but its shape is {bias.shape}.')
|
82 |
+
self.bias = T.nn.Parameter(bias)
|
83 |
+
|
84 |
+
def forward(self, input: T.Tensor) -> T.Tensor:
|
85 |
+
# We need replace the feature dimension with multi-dimension to contact
|
86 |
+
# with TT-matrix.
|
87 |
+
input_shape = input.shape
|
88 |
+
input = input.reshape(-1, *self.shape[0])
|
89 |
+
|
90 |
+
# Contract input with weights and replace back multi-dimension with
|
91 |
+
# feature dimension.
|
92 |
+
output = self.contact(input, *self.cores)
|
93 |
+
output = output.reshape(*input_shape[:-1], self.out_features)
|
94 |
+
|
95 |
+
if self.bias is not None:
|
96 |
+
output += self.bias
|
97 |
+
return output
|
98 |
+
|
99 |
+
@classmethod
|
100 |
+
def from_linear(cls, linear: T.nn.Linear,
|
101 |
+
shape: Tuple[Tuple[int], Tuple[int]], rank: int, **kwargs):
|
102 |
+
ndim = len(shape[0])
|
103 |
+
|
104 |
+
# Prepare information about shape and rank of TT (not TTM).
|
105 |
+
tt_rank = (1, ) + (rank, ) * (ndim - 1) + (1, )
|
106 |
+
tt_shape = tuple(n * m for n, m in zip(*shape))
|
107 |
+
|
108 |
+
# Reshape weight matrix to tensor indexes like TT-matrix.
|
109 |
+
matrix = linear.weight.data.T
|
110 |
+
tensor = matrix.reshape(shape[0] + shape[1])
|
111 |
+
for i in range(ndim - 1):
|
112 |
+
tensor = tensor.moveaxis(ndim + i, 2 * i + 1)
|
113 |
+
|
114 |
+
# Reshape TT-matrix to a plain TT and apply decomposition.
|
115 |
+
tensor = tensor.reshape(tt_shape)
|
116 |
+
cores = ttd(tensor, tt_rank, **kwargs)
|
117 |
+
|
118 |
+
# Reshape TT-cores back to TT-matrix cores (TTM-cores).
|
119 |
+
core_shapes = zip(tt_rank, *shape, tt_rank[1:])
|
120 |
+
cores = [core.reshape(core_shape)
|
121 |
+
for core, core_shape in zip(cores, core_shapes)]
|
122 |
+
|
123 |
+
# Make copy of bias if it exists.
|
124 |
+
bias = None
|
125 |
+
if linear.bias is not None:
|
126 |
+
bias = T.clone(linear.bias.data)
|
127 |
+
|
128 |
+
return TTCompressedLinear(cores, bias)
|
129 |
+
|
130 |
+
@classmethod
|
131 |
+
def from_random(cls, shape: Tuple[Tuple[int], Tuple[int]], rank: int,
|
132 |
+
bias: bool = True):
|
133 |
+
tt_ndim = len(shape[0])
|
134 |
+
tt_rank = (1, ) + (rank, ) * (tt_ndim - 1) + (1, )
|
135 |
+
core_shapes = zip(tt_rank, *shape, tt_rank[1:])
|
136 |
+
cores = [T.randn(core_shape) for core_shape in core_shapes]
|
137 |
+
|
138 |
+
bias_term = None
|
139 |
+
if bias:
|
140 |
+
out_features = np.prod(shape[1])
|
141 |
+
bias_term = T.randn(out_features)
|
142 |
+
|
143 |
+
return TTCompressedLinear(cores, bias_term)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:841fc650e6f7bdff324283fa7483067388544d8086e5d90bb8c37ad17c64fe5a
|
3 |
+
size 349182013
|
util.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copied from rut5compressed/util.py of rut5compressed repository.
|
2 |
+
|
3 |
+
import logging
|
4 |
+
import re
|
5 |
+
from functools import wraps
|
6 |
+
from re import Pattern
|
7 |
+
from typing import Callable, Dict, Optional, Tuple
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import torch as T
|
11 |
+
|
12 |
+
from .modules import TTCompressedLinear
|
13 |
+
|
14 |
+
|
15 |
+
def map_module(root: T.nn.Module,
|
16 |
+
func: Callable[[T.nn.Module, str], T.nn.Module],
|
17 |
+
patt: Optional[str] = None) -> T.nn.Module:
|
18 |
+
"""Function ``map_module`` applies a function to each leaf of module tree
|
19 |
+
which matches to a specified pattern.
|
20 |
+
|
21 |
+
Parameters
|
22 |
+
----------
|
23 |
+
root : torch.nn.Module
|
24 |
+
Module to modify.
|
25 |
+
func : callable
|
26 |
+
Function to be applied to every module (or matched to pattern) in
|
27 |
+
module tree.
|
28 |
+
patt : str, optional
|
29 |
+
Pattern to filter modules by path in module tree.
|
30 |
+
|
31 |
+
Returns
|
32 |
+
-------
|
33 |
+
torch.nn.Module
|
34 |
+
Module modified in-place.
|
35 |
+
"""
|
36 |
+
@wraps(func)
|
37 |
+
def func_safe(*args, **kwargs):
|
38 |
+
node = func(*args, **kwargs)
|
39 |
+
if not isinstance(node, T.nn.Module):
|
40 |
+
raise ValueError('Mapped result must be toch.nn.Module type '
|
41 |
+
f'but given {type(node)}.')
|
42 |
+
return node
|
43 |
+
|
44 |
+
return _map_module(root, func_safe, re.compile(patt or r'.*'), '')
|
45 |
+
|
46 |
+
|
47 |
+
def _map_module(root: T.nn.Module,
|
48 |
+
func: Callable[[T.nn.Module, str], T.nn.Module], patt: Pattern,
|
49 |
+
path: str) -> T.nn.Module:
|
50 |
+
for name, child in root.named_children():
|
51 |
+
node = _map_module(child, func, patt, f'{path}/{name}')
|
52 |
+
if node != child:
|
53 |
+
setattr(root, name, node)
|
54 |
+
if patt.match(path or '/'):
|
55 |
+
root = func(root, path or '/')
|
56 |
+
return root
|
57 |
+
|
58 |
+
|
59 |
+
def convert_linear(module: T.nn.Linear, ctor, **kwargs) -> T.nn.Module:
|
60 |
+
"""Function convert_linear takes module and returns linear module with
|
61 |
+
approximate matmul. Non-linear modules are returned intact.
|
62 |
+
"""
|
63 |
+
if not isinstance(module, T.nn.Linear):
|
64 |
+
return module
|
65 |
+
raise NotImplementedError
|
66 |
+
|
67 |
+
|
68 |
+
def numel(module: T.nn.Module):
|
69 |
+
value = sum(x.numel() for x in module.parameters()) + \
|
70 |
+
sum(x.numel() for x in module.buffers())
|
71 |
+
|
72 |
+
def account_prunned(module: T.nn.Module, path: str):
|
73 |
+
nonlocal value
|
74 |
+
for name, attr in vars(module).items():
|
75 |
+
if not name.endswith('_mask') or not isinstance(attr, T.Tensor):
|
76 |
+
continue
|
77 |
+
|
78 |
+
weight_name = name[:-5]
|
79 |
+
if not hasattr(module, weight_name):
|
80 |
+
continue
|
81 |
+
|
82 |
+
weight = getattr(module, weight_name)
|
83 |
+
value -= weight.numel() - attr.sum()
|
84 |
+
value += attr.numel()
|
85 |
+
return module
|
86 |
+
|
87 |
+
def account_quantized(module: T.nn.Module, path: str):
|
88 |
+
nonlocal value
|
89 |
+
if isinstance(module, T.nn.quantized.Linear):
|
90 |
+
value += module.weight().numel()
|
91 |
+
if module.bias() is not None:
|
92 |
+
value += module.bias().numel()
|
93 |
+
return module
|
94 |
+
|
95 |
+
def account_rest(module: T.nn.Module, path: str):
|
96 |
+
account_prunned(module, path)
|
97 |
+
account_quantized(module, path)
|
98 |
+
return module
|
99 |
+
|
100 |
+
map_module(module, account_rest)
|
101 |
+
return value
|
102 |
+
|
103 |
+
|
104 |
+
def sizeof(module: T.nn.Module):
|
105 |
+
value = sum(x.numel() * x.element_size() for x in module.parameters()) + \
|
106 |
+
sum(x.numel() * x.element_size() for x in module.buffers())
|
107 |
+
|
108 |
+
def account_prunned(module: T.nn.Module, path: str):
|
109 |
+
nonlocal value
|
110 |
+
for name, attr in vars(module).items():
|
111 |
+
if not name.endswith('_mask') or not isinstance(attr, T.Tensor):
|
112 |
+
continue
|
113 |
+
|
114 |
+
weight_name = name[:-5]
|
115 |
+
if not hasattr(module, weight_name):
|
116 |
+
continue
|
117 |
+
|
118 |
+
weight = getattr(module, weight_name)
|
119 |
+
value -= (weight.numel() - attr.sum()) * weight.element_size()
|
120 |
+
value += attr.numel() * attr.element_size()
|
121 |
+
return module
|
122 |
+
|
123 |
+
def account_quantized(module: T.nn.Module, path: str):
|
124 |
+
nonlocal value
|
125 |
+
if isinstance(module, T.nn.quantized.Linear):
|
126 |
+
value += module.weight().numel() * module.weight().element_size()
|
127 |
+
if (bias := module.bias()) is not None:
|
128 |
+
value += bias.numel() * bias.element_size()
|
129 |
+
return module
|
130 |
+
|
131 |
+
def account_rest(module: T.nn.Module, path: str):
|
132 |
+
account_prunned(module, path)
|
133 |
+
account_quantized(module, path)
|
134 |
+
return module
|
135 |
+
|
136 |
+
map_module(module, account_rest)
|
137 |
+
return value
|
138 |
+
|
139 |
+
|
140 |
+
def flatten_module(module: T.nn.Module, regexp=None) -> Dict[str, T.nn.Module]:
|
141 |
+
modules = {}
|
142 |
+
map_module(module, lambda x, y: modules.update(**{y: x}) or x, regexp)
|
143 |
+
return modules
|
144 |
+
|
145 |
+
|
146 |
+
def print_flatten(module: T.nn.Module):
|
147 |
+
paths = []
|
148 |
+
path_len = 0
|
149 |
+
names = []
|
150 |
+
name_len = 0
|
151 |
+
indx_len = 0
|
152 |
+
|
153 |
+
def func(module, path):
|
154 |
+
nonlocal path_len, name_len, indx_len
|
155 |
+
paths.append(path)
|
156 |
+
path_len = max(path_len, len(path))
|
157 |
+
name = module.__class__.__name__
|
158 |
+
names.append(name)
|
159 |
+
name_len = max(name_len, len(name))
|
160 |
+
indx_len += 1
|
161 |
+
return module
|
162 |
+
|
163 |
+
map_module(module, func)
|
164 |
+
|
165 |
+
indx_len = int(np.ceil(np.log10(indx_len)))
|
166 |
+
fmt = f'{{indx:>{indx_len}s}} {{path:{path_len}s}} {{name:{name_len}s}}'
|
167 |
+
print(fmt.format(indx='#', path='Path', name='Layer'))
|
168 |
+
print('-' * (indx_len + path_len + name_len + 2))
|
169 |
+
for i, (path, name) in enumerate(zip(paths, names)):
|
170 |
+
print(fmt.format(indx=str(i), path=path, name=name))
|
171 |
+
|
172 |
+
|
173 |
+
def compress_linear_tt(module: T.nn.Module, path: str,
|
174 |
+
shape: Tuple[Tuple[int], Tuple[int]],
|
175 |
+
rank: int) -> T.nn.Module:
|
176 |
+
if not isinstance(module, T.nn.Linear):
|
177 |
+
return module
|
178 |
+
|
179 |
+
# TODO(@not-found): We need propper compression config.
|
180 |
+
inp_size = np.prod(shape[0])
|
181 |
+
out_size = np.prod(shape[1])
|
182 |
+
if inp_size == module.in_features and out_size == module.out_features:
|
183 |
+
pass
|
184 |
+
elif inp_size == module.out_features and out_size == module.in_features:
|
185 |
+
shape = (shape[1], shape[0])
|
186 |
+
else:
|
187 |
+
raise ValueError(
|
188 |
+
'Input and output features does not match to compression shape: '
|
189 |
+
f'{shape[0]} vs {module.in_features} and {shape[1]} vs '
|
190 |
+
f'{module.out_features}.')
|
191 |
+
|
192 |
+
logging.info('apply tt compression to layer %s', path)
|
193 |
+
return TTCompressedLinear.from_linear(module, shape, rank) # noqa: F821
|