ppo_lunar_lander-v2 / config.json
s-himmi's picture
Unit1 hands-on default run
e0f3fc4
raw
history blame
14.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fed32d2f790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fed32d2f820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fed32d2f8b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fed32d2f940>", "_build": "<function ActorCriticPolicy._build at 0x7fed32d2f9d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fed32d2fa60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fed32d2faf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fed32d2fb80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fed32d2fc10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fed32d2fca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fed32d2fd30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fed32d2fdc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fed32d25930>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673726906256798937, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1fKz5PkmO8zr4/OwDhZLlgW8C9jkZ4ugAAgD8AAIA/ZiRdvSojSD7yNAM/FiirviW5qj7axky9AAAAAAAAAADmk6K9FBSHuhEggTd+K6oyA/qQOdpVlrYAAIA/AACAP01OT707oIs/r2MnvlTiEL8ADbu9erQQvQAAAAAAAAAAmv+pvURtlT71SlQ+9pGYvqugtTwsyIM9AAAAAAAAAABmxtk9SCmCun02BrwsmCk1TOYbuzqlkrQAAAAAAACAP4b4Or7AGoE+qbeEPlVLm77c/tw8OLBwPQAAAAAAAAAAQDDiPW//Sj0S4Ai+NLYyvvMAwryQFci9AAAAAAAAAAAzg3w74TrUuEKW87b6YyeyZNoJPHGtFTYAAIA/AACAP00BdD3pd0Q/rg5XvEB0Dr/7ntg9cPdVPQAAAAAAAAAAeskvPlwcYryMJEi4HIJBN1U9vr2bdJo3AACAPwAAgD+a2Zw97AyQPBvRFb5+DBO+540uvUqyGzwAAAAAAAAAAOYvCD7D8hQ9HLiQvU38F75UpDw8xeTBuwAAAAAAAAAAjZT5vdsU7j5Vcag9ALGaviV/Vb2PjRY9AAAAAAAAAACtBDu+CJzKPlhLFT1/ut6+BLTXvFW/dD0AAAAAAAAAAO3Rkj7nxYg+vaRovnZRsL4aGqi8hozKvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpfljWhs7cUCUhpRSlIwBbJRLw4wBdJRHQKlkzVvuPWB1fZQoaAZoCWgPQwiZZOQsrBdwQJSGlFKUaBVL2WgWR0CpZTYI8hcJdX2UKGgGaAloD0MITyMtlTfLcUCUhpRSlGgVS75oFkdAqWVNXo1UEXV9lChoBmgJaA9DCEFGQIVjLnNAlIaUUpRoFU1XAWgWR0CpZV6sySFHdX2UKGgGaAloD0MIF7g81gydcECUhpRSlGgVS9NoFkdAqWVpGYrrgXV9lChoBmgJaA9DCBTpfk7BpnJAlIaUUpRoFUvuaBZHQKlljQfIS151fZQoaAZoCWgPQwhrRZvjnCZwQJSGlFKUaBVL0WgWR0CpZYvYODradX2UKGgGaAloD0MIPKBsylWIcUCUhpRSlGgVS8NoFkdAqWXFEd/8VHV9lChoBmgJaA9DCEoLl1WY23JAlIaUUpRoFU1xAWgWR0CpZgmZ/kNndX2UKGgGaAloD0MIgbBTrBpJcECUhpRSlGgVS7VoFkdAqWYezMRpUXV9lChoBmgJaA9DCP5+MVuy83BAlIaUUpRoFUvKaBZHQKlmLUtqYZ51fZQoaAZoCWgPQwjBNuLJbnNxQJSGlFKUaBVL8GgWR0CpZjzy8SPEdX2UKGgGaAloD0MIDYl7LH1AckCUhpRSlGgVS95oFkdAqWZJWq94/3V9lChoBmgJaA9DCMgKfhti/XBAlIaUUpRoFUvUaBZHQKlmU7cwg1Z1fZQoaAZoCWgPQwit26D2WwBvQJSGlFKUaBVLy2gWR0CpZl+p4rz5dX2UKGgGaAloD0MIo5HPK15jckCUhpRSlGgVS/5oFkdAqWZ0b1h9cHV9lChoBmgJaA9DCCR+xRpu0XBAlIaUUpRoFUvdaBZHQKlnE938n/l1fZQoaAZoCWgPQwhn0TsVcDdxQJSGlFKUaBVLxmgWR0CpZ2xTbWVedX2UKGgGaAloD0MIwePbu4Z/cUCUhpRSlGgVS8toFkdAqWdwWFev6nV9lChoBmgJaA9DCKSoM/eQfXFAlIaUUpRoFUuvaBZHQKlnk86FM7F1fZQoaAZoCWgPQwgnT1lNF1NyQJSGlFKUaBVL72gWR0CpZ7GqHXVcdX2UKGgGaAloD0MIKV/QQoKJckCUhpRSlGgVS/loFkdAqWgs/MW43HV9lChoBmgJaA9DCM7drpdmE3FAlIaUUpRoFUvTaBZHQKloZxm03Ox1fZQoaAZoCWgPQwhKs3kcxoByQJSGlFKUaBVL0mgWR0CpaKMVLzwudX2UKGgGaAloD0MIE7ngDL6mckCUhpRSlGgVS99oFkdAqWjAmzByj3V9lChoBmgJaA9DCDdPdcjNGHFAlIaUUpRoFUv4aBZHQKlo1zKcNH91fZQoaAZoCWgPQwhjesISjyxxQJSGlFKUaBVL4WgWR0CpaOVbiZOSdX2UKGgGaAloD0MIopxoVyE9ckCUhpRSlGgVS/toFkdAqWlKlrM1THV9lChoBmgJaA9DCMcS1sYYCnNAlIaUUpRoFU1gAWgWR0CpaYvpQk5ZdX2UKGgGaAloD0MIwcjLmti9cECUhpRSlGgVS69oFkdAqWmkCLdepnV9lChoBmgJaA9DCInPnWC/uXFAlIaUUpRoFUvYaBZHQKlqK9K28Zl1fZQoaAZoCWgPQwhPHhZqDQhxQJSGlFKUaBVNDQFoFkdAqWqD4i5d4XV9lChoBmgJaA9DCE0uxsB6GHFAlIaUUpRoFUvzaBZHQKlqxH4Glhx1fZQoaAZoCWgPQwiNs+kIYLNxQJSGlFKUaBVNXwFoFkdAqWrPLRrrPnV9lChoBmgJaA9DCI0OSML+nHBAlIaUUpRoFU0FAWgWR0Cpayo5PuXvdX2UKGgGaAloD0MIxxNBnEdZcECUhpRSlGgVS91oFkdAqWtpIDoyK3V9lChoBmgJaA9DCCPdzymIFXFAlIaUUpRoFUvbaBZHQKlrsb+98JF1fZQoaAZoCWgPQwhPllrvt8hwQJSGlFKUaBVNBwFoFkdAqWu7zK9wm3V9lChoBmgJaA9DCMGnOXkRqHFAlIaUUpRoFUvmaBZHQKlr6/s3Q2N1fZQoaAZoCWgPQwi2niEcsxpyQJSGlFKUaBVL7GgWR0CpbA4uTRpldX2UKGgGaAloD0MIAALWql2IcUCUhpRSlGgVS7poFkdAqWwSe5Fw1nV9lChoBmgJaA9DCDSEY5Y9L3FAlIaUUpRoFU1HAWgWR0CpbQHxJ/XodX2UKGgGaAloD0MIxsA6jp+/bkCUhpRSlGgVS9xoFkdAqW0q/oJRfnV9lChoBmgJaA9DCKMDkrBvBHNAlIaUUpRoFU0gAWgWR0CpbTJSrHU+dX2UKGgGaAloD0MIIEYIj/ZhcECUhpRSlGgVS7ZoFkdAqW1ApYs/ZHV9lChoBmgJaA9DCPLTuDf/d3FAlIaUUpRoFUvqaBZHQKlts7FKkEd1fZQoaAZoCWgPQwjkZrgBXzpwQJSGlFKUaBVLw2gWR0Cpbc08mrsCdX2UKGgGaAloD0MI323eOOm/cUCUhpRSlGgVS+poFkdAqW3x0MgEEHV9lChoBmgJaA9DCBMro5GPc3FAlIaUUpRoFUvFaBZHQKlub2Dg62h1fZQoaAZoCWgPQwhSuB6F67ZxQJSGlFKUaBVL8mgWR0Cpbse9Jz1cdX2UKGgGaAloD0MIEwznGqYfcUCUhpRSlGgVS+RoFkdAqW7l4zJp4HV9lChoBmgJaA9DCAwjvajdWXNAlIaUUpRoFUv2aBZHQKlvbKq4pc51fZQoaAZoCWgPQwh1sP7PIe9yQJSGlFKUaBVL+mgWR0Cpb6kiUxEfdX2UKGgGaAloD0MIo3N+iiNhc0CUhpRSlGgVTQIBaBZHQKlvwhpxm051fZQoaAZoCWgPQwindoaprexxQJSGlFKUaBVLvmgWR0Cpb/1psXSCdX2UKGgGaAloD0MImQ0yyUi6b0CUhpRSlGgVS8BoFkdAqXATT2FnI3V9lChoBmgJaA9DCFLvqZx20XFAlIaUUpRoFUvyaBZHQKlwkUMXrMV1fZQoaAZoCWgPQwg+BcB4RrlyQJSGlFKUaBVLxmgWR0CpcL6JqIrOdX2UKGgGaAloD0MI93R1x+JYcUCUhpRSlGgVS8poFkdAqXD1DQZ4wHV9lChoBmgJaA9DCMNi1LX2aHJAlIaUUpRoFUv8aBZHQKlxdZ+x4Y91fZQoaAZoCWgPQwiISE272CtxQJSGlFKUaBVLtWgWR0CpcXpyhi9adX2UKGgGaAloD0MIqYQn9DofcUCUhpRSlGgVS9ZoFkdAqXIcp7TlT3V9lChoBmgJaA9DCKG/0CPGQW5AlIaUUpRoFU0FAWgWR0CpcnD+JgstdX2UKGgGaAloD0MIkJ+NXDdGYUCUhpRSlGgVTegDaBZHQKlyizBRAKR1fZQoaAZoCWgPQwgfSrTkccpwQJSGlFKUaBVL0mgWR0CpcqMxwhnrdX2UKGgGaAloD0MI5x2n6AhUcUCUhpRSlGgVS61oFkdAqXK9urIYFnV9lChoBmgJaA9DCD1/2qhOrHBAlIaUUpRoFUvaaBZHQKly9xd6cAl1fZQoaAZoCWgPQwiRfCWQUuBxQJSGlFKUaBVL6GgWR0Cpc353kgfVdX2UKGgGaAloD0MIE+8ATxpYcUCUhpRSlGgVS9JoFkdAqXPDm6oVEnV9lChoBmgJaA9DCOSByCLNym9AlIaUUpRoFUvGaBZHQKlzwv8qFyt1fZQoaAZoCWgPQwivXkVGh5xhQJSGlFKUaBVN6ANoFkdAqXPHEMspX3V9lChoBmgJaA9DCH46HjPQTnFAlIaUUpRoFUvTaBZHQKl0HGgBcRl1fZQoaAZoCWgPQwhj8DDt2yNwQJSGlFKUaBVLvmgWR0CpdES925hCdX2UKGgGaAloD0MI7+L9uP3zbUCUhpRSlGgVS95oFkdAqXS4f+0gKXV9lChoBmgJaA9DCNvebkkOAnFAlIaUUpRoFUvPaBZHQKl1Fe2NNrV1fZQoaAZoCWgPQwi8ytqmuGxyQJSGlFKUaBVL0GgWR0CpdV/SH/LldX2UKGgGaAloD0MIzXhb6bV8cECUhpRSlGgVTYkBaBZHQKl1hLowEhd1fZQoaAZoCWgPQwhf7L344ihwQJSGlFKUaBVLvGgWR0CpdZy8J2MbdX2UKGgGaAloD0MIk8X9R6YgcUCUhpRSlGgVS9doFkdAqXW+h7E5yXV9lChoBmgJaA9DCErToGgewXFAlIaUUpRoFU0JAWgWR0Cpdlnv2GqQdX2UKGgGaAloD0MIDRmPUsm9cUCUhpRSlGgVS71oFkdAqXZf8IiTuHV9lChoBmgJaA9DCH3KMVkcznFAlIaUUpRoFUvAaBZHQKl2aULUkOZ1fZQoaAZoCWgPQwiY+nlTkUpvQJSGlFKUaBVNGwFoFkdAqXaBhvze43V9lChoBmgJaA9DCBSX4xWIxHBAlIaUUpRoFUvNaBZHQKl2lWbwz+F1fZQoaAZoCWgPQwigG5qyUyJyQJSGlFKUaBVL+2gWR0Cpdudk8RthdX2UKGgGaAloD0MIinPU0fEYc0CUhpRSlGgVS9JoFkdAqXbylYU343V9lChoBmgJaA9DCDwSL0/n3nBAlIaUUpRoFUvgaBZHQKl3Py1eBxx1fZQoaAZoCWgPQwgXYvVH2FtwQJSGlFKUaBVL2mgWR0Cpd5OW0JF9dX2UKGgGaAloD0MIh99Nt2z8YECUhpRSlGgVTegDaBZHQKl3th99c8l1fZQoaAZoCWgPQwilhGBVvWhwQJSGlFKUaBVL0GgWR0CpeAAzHjp+dX2UKGgGaAloD0MInNuEe2V5b0CUhpRSlGgVS9ZoFkdAqXgx0uDjBHV9lChoBmgJaA9DCOPiqNxEHnBAlIaUUpRoFU0BAWgWR0CpeFug6EJ0dX2UKGgGaAloD0MIYtaLodxLckCUhpRSlGgVS+NoFkdAqXiN5KODJ3V9lChoBmgJaA9DCJsff2kRgXFAlIaUUpRoFUu3aBZHQKl4mRW912d1fZQoaAZoCWgPQwjc2sLzEhxyQJSGlFKUaBVL9WgWR0CpeKXDvVmSdX2UKGgGaAloD0MI2zUhrTG7cUCUhpRSlGgVS7VoFkdAqXipiXpnpXV9lChoBmgJaA9DCKUw73FmS3FAlIaUUpRoFUvSaBZHQKl41+irT6V1fZQoaAZoCWgPQwiDiNS0SytyQJSGlFKUaBVLuWgWR0CpeRNahYeUdX2UKGgGaAloD0MINxrAWyBPbkCUhpRSlGgVS+BoFkdAqXkyqp97W3V9lChoBmgJaA9DCH7IW67+X3BAlIaUUpRoFUvsaBZHQKl5teVLSNR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}