Unit1 hands-on default run
Browse files- README.md +37 -0
- config.json +1 -0
- ppo_lunar_lander_v1.zip +3 -0
- ppo_lunar_lander_v1/_stable_baselines3_version +1 -0
- ppo_lunar_lander_v1/data +95 -0
- ppo_lunar_lander_v1/policy.optimizer.pth +3 -0
- ppo_lunar_lander_v1/policy.pth +3 -0
- ppo_lunar_lander_v1/pytorch_variables.pth +3 -0
- ppo_lunar_lander_v1/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 267.14 +/- 14.49
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fed32d2f790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fed32d2f820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fed32d2f8b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fed32d2f940>", "_build": "<function ActorCriticPolicy._build at 0x7fed32d2f9d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fed32d2fa60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fed32d2faf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fed32d2fb80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fed32d2fc10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fed32d2fca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fed32d2fd30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fed32d2fdc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fed32d25930>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673726906256798937, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1fKz5PkmO8zr4/OwDhZLlgW8C9jkZ4ugAAgD8AAIA/ZiRdvSojSD7yNAM/FiirviW5qj7axky9AAAAAAAAAADmk6K9FBSHuhEggTd+K6oyA/qQOdpVlrYAAIA/AACAP01OT707oIs/r2MnvlTiEL8ADbu9erQQvQAAAAAAAAAAmv+pvURtlT71SlQ+9pGYvqugtTwsyIM9AAAAAAAAAABmxtk9SCmCun02BrwsmCk1TOYbuzqlkrQAAAAAAACAP4b4Or7AGoE+qbeEPlVLm77c/tw8OLBwPQAAAAAAAAAAQDDiPW//Sj0S4Ai+NLYyvvMAwryQFci9AAAAAAAAAAAzg3w74TrUuEKW87b6YyeyZNoJPHGtFTYAAIA/AACAP00BdD3pd0Q/rg5XvEB0Dr/7ntg9cPdVPQAAAAAAAAAAeskvPlwcYryMJEi4HIJBN1U9vr2bdJo3AACAPwAAgD+a2Zw97AyQPBvRFb5+DBO+540uvUqyGzwAAAAAAAAAAOYvCD7D8hQ9HLiQvU38F75UpDw8xeTBuwAAAAAAAAAAjZT5vdsU7j5Vcag9ALGaviV/Vb2PjRY9AAAAAAAAAACtBDu+CJzKPlhLFT1/ut6+BLTXvFW/dD0AAAAAAAAAAO3Rkj7nxYg+vaRovnZRsL4aGqi8hozKvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpfljWhs7cUCUhpRSlIwBbJRLw4wBdJRHQKlkzVvuPWB1fZQoaAZoCWgPQwiZZOQsrBdwQJSGlFKUaBVL2WgWR0CpZTYI8hcJdX2UKGgGaAloD0MITyMtlTfLcUCUhpRSlGgVS75oFkdAqWVNXo1UEXV9lChoBmgJaA9DCEFGQIVjLnNAlIaUUpRoFU1XAWgWR0CpZV6sySFHdX2UKGgGaAloD0MIF7g81gydcECUhpRSlGgVS9NoFkdAqWVpGYrrgXV9lChoBmgJaA9DCBTpfk7BpnJAlIaUUpRoFUvuaBZHQKlljQfIS151fZQoaAZoCWgPQwhrRZvjnCZwQJSGlFKUaBVL0WgWR0CpZYvYODradX2UKGgGaAloD0MIPKBsylWIcUCUhpRSlGgVS8NoFkdAqWXFEd/8VHV9lChoBmgJaA9DCEoLl1WY23JAlIaUUpRoFU1xAWgWR0CpZgmZ/kNndX2UKGgGaAloD0MIgbBTrBpJcECUhpRSlGgVS7VoFkdAqWYezMRpUXV9lChoBmgJaA9DCP5+MVuy83BAlIaUUpRoFUvKaBZHQKlmLUtqYZ51fZQoaAZoCWgPQwjBNuLJbnNxQJSGlFKUaBVL8GgWR0CpZjzy8SPEdX2UKGgGaAloD0MIDYl7LH1AckCUhpRSlGgVS95oFkdAqWZJWq94/3V9lChoBmgJaA9DCMgKfhti/XBAlIaUUpRoFUvUaBZHQKlmU7cwg1Z1fZQoaAZoCWgPQwit26D2WwBvQJSGlFKUaBVLy2gWR0CpZl+p4rz5dX2UKGgGaAloD0MIo5HPK15jckCUhpRSlGgVS/5oFkdAqWZ0b1h9cHV9lChoBmgJaA9DCCR+xRpu0XBAlIaUUpRoFUvdaBZHQKlnE938n/l1fZQoaAZoCWgPQwhn0TsVcDdxQJSGlFKUaBVLxmgWR0CpZ2xTbWVedX2UKGgGaAloD0MIwePbu4Z/cUCUhpRSlGgVS8toFkdAqWdwWFev6nV9lChoBmgJaA9DCKSoM/eQfXFAlIaUUpRoFUuvaBZHQKlnk86FM7F1fZQoaAZoCWgPQwgnT1lNF1NyQJSGlFKUaBVL72gWR0CpZ7GqHXVcdX2UKGgGaAloD0MIKV/QQoKJckCUhpRSlGgVS/loFkdAqWgs/MW43HV9lChoBmgJaA9DCM7drpdmE3FAlIaUUpRoFUvTaBZHQKloZxm03Ox1fZQoaAZoCWgPQwhKs3kcxoByQJSGlFKUaBVL0mgWR0CpaKMVLzwudX2UKGgGaAloD0MIE7ngDL6mckCUhpRSlGgVS99oFkdAqWjAmzByj3V9lChoBmgJaA9DCDdPdcjNGHFAlIaUUpRoFUv4aBZHQKlo1zKcNH91fZQoaAZoCWgPQwhjesISjyxxQJSGlFKUaBVL4WgWR0CpaOVbiZOSdX2UKGgGaAloD0MIopxoVyE9ckCUhpRSlGgVS/toFkdAqWlKlrM1THV9lChoBmgJaA9DCMcS1sYYCnNAlIaUUpRoFU1gAWgWR0CpaYvpQk5ZdX2UKGgGaAloD0MIwcjLmti9cECUhpRSlGgVS69oFkdAqWmkCLdepnV9lChoBmgJaA9DCInPnWC/uXFAlIaUUpRoFUvYaBZHQKlqK9K28Zl1fZQoaAZoCWgPQwhPHhZqDQhxQJSGlFKUaBVNDQFoFkdAqWqD4i5d4XV9lChoBmgJaA9DCE0uxsB6GHFAlIaUUpRoFUvzaBZHQKlqxH4Glhx1fZQoaAZoCWgPQwiNs+kIYLNxQJSGlFKUaBVNXwFoFkdAqWrPLRrrPnV9lChoBmgJaA9DCI0OSML+nHBAlIaUUpRoFU0FAWgWR0Cpayo5PuXvdX2UKGgGaAloD0MIxxNBnEdZcECUhpRSlGgVS91oFkdAqWtpIDoyK3V9lChoBmgJaA9DCCPdzymIFXFAlIaUUpRoFUvbaBZHQKlrsb+98JF1fZQoaAZoCWgPQwhPllrvt8hwQJSGlFKUaBVNBwFoFkdAqWu7zK9wm3V9lChoBmgJaA9DCMGnOXkRqHFAlIaUUpRoFUvmaBZHQKlr6/s3Q2N1fZQoaAZoCWgPQwi2niEcsxpyQJSGlFKUaBVL7GgWR0CpbA4uTRpldX2UKGgGaAloD0MIAALWql2IcUCUhpRSlGgVS7poFkdAqWwSe5Fw1nV9lChoBmgJaA9DCDSEY5Y9L3FAlIaUUpRoFU1HAWgWR0CpbQHxJ/XodX2UKGgGaAloD0MIxsA6jp+/bkCUhpRSlGgVS9xoFkdAqW0q/oJRfnV9lChoBmgJaA9DCKMDkrBvBHNAlIaUUpRoFU0gAWgWR0CpbTJSrHU+dX2UKGgGaAloD0MIIEYIj/ZhcECUhpRSlGgVS7ZoFkdAqW1ApYs/ZHV9lChoBmgJaA9DCPLTuDf/d3FAlIaUUpRoFUvqaBZHQKlts7FKkEd1fZQoaAZoCWgPQwjkZrgBXzpwQJSGlFKUaBVLw2gWR0Cpbc08mrsCdX2UKGgGaAloD0MI323eOOm/cUCUhpRSlGgVS+poFkdAqW3x0MgEEHV9lChoBmgJaA9DCBMro5GPc3FAlIaUUpRoFUvFaBZHQKlub2Dg62h1fZQoaAZoCWgPQwhSuB6F67ZxQJSGlFKUaBVL8mgWR0Cpbse9Jz1cdX2UKGgGaAloD0MIEwznGqYfcUCUhpRSlGgVS+RoFkdAqW7l4zJp4HV9lChoBmgJaA9DCAwjvajdWXNAlIaUUpRoFUv2aBZHQKlvbKq4pc51fZQoaAZoCWgPQwh1sP7PIe9yQJSGlFKUaBVL+mgWR0Cpb6kiUxEfdX2UKGgGaAloD0MIo3N+iiNhc0CUhpRSlGgVTQIBaBZHQKlvwhpxm051fZQoaAZoCWgPQwindoaprexxQJSGlFKUaBVLvmgWR0Cpb/1psXSCdX2UKGgGaAloD0MImQ0yyUi6b0CUhpRSlGgVS8BoFkdAqXATT2FnI3V9lChoBmgJaA9DCFLvqZx20XFAlIaUUpRoFUvyaBZHQKlwkUMXrMV1fZQoaAZoCWgPQwg+BcB4RrlyQJSGlFKUaBVLxmgWR0CpcL6JqIrOdX2UKGgGaAloD0MI93R1x+JYcUCUhpRSlGgVS8poFkdAqXD1DQZ4wHV9lChoBmgJaA9DCMNi1LX2aHJAlIaUUpRoFUv8aBZHQKlxdZ+x4Y91fZQoaAZoCWgPQwiISE272CtxQJSGlFKUaBVLtWgWR0CpcXpyhi9adX2UKGgGaAloD0MIqYQn9DofcUCUhpRSlGgVS9ZoFkdAqXIcp7TlT3V9lChoBmgJaA9DCKG/0CPGQW5AlIaUUpRoFU0FAWgWR0CpcnD+JgstdX2UKGgGaAloD0MIkJ+NXDdGYUCUhpRSlGgVTegDaBZHQKlyizBRAKR1fZQoaAZoCWgPQwgfSrTkccpwQJSGlFKUaBVL0mgWR0CpcqMxwhnrdX2UKGgGaAloD0MI5x2n6AhUcUCUhpRSlGgVS61oFkdAqXK9urIYFnV9lChoBmgJaA9DCD1/2qhOrHBAlIaUUpRoFUvaaBZHQKly9xd6cAl1fZQoaAZoCWgPQwiRfCWQUuBxQJSGlFKUaBVL6GgWR0Cpc353kgfVdX2UKGgGaAloD0MIE+8ATxpYcUCUhpRSlGgVS9JoFkdAqXPDm6oVEnV9lChoBmgJaA9DCOSByCLNym9AlIaUUpRoFUvGaBZHQKlzwv8qFyt1fZQoaAZoCWgPQwivXkVGh5xhQJSGlFKUaBVN6ANoFkdAqXPHEMspX3V9lChoBmgJaA9DCH46HjPQTnFAlIaUUpRoFUvTaBZHQKl0HGgBcRl1fZQoaAZoCWgPQwhj8DDt2yNwQJSGlFKUaBVLvmgWR0CpdES925hCdX2UKGgGaAloD0MI7+L9uP3zbUCUhpRSlGgVS95oFkdAqXS4f+0gKXV9lChoBmgJaA9DCNvebkkOAnFAlIaUUpRoFUvPaBZHQKl1Fe2NNrV1fZQoaAZoCWgPQwi8ytqmuGxyQJSGlFKUaBVL0GgWR0CpdV/SH/LldX2UKGgGaAloD0MIzXhb6bV8cECUhpRSlGgVTYkBaBZHQKl1hLowEhd1fZQoaAZoCWgPQwhf7L344ihwQJSGlFKUaBVLvGgWR0CpdZy8J2MbdX2UKGgGaAloD0MIk8X9R6YgcUCUhpRSlGgVS9doFkdAqXW+h7E5yXV9lChoBmgJaA9DCErToGgewXFAlIaUUpRoFU0JAWgWR0Cpdlnv2GqQdX2UKGgGaAloD0MIDRmPUsm9cUCUhpRSlGgVS71oFkdAqXZf8IiTuHV9lChoBmgJaA9DCH3KMVkcznFAlIaUUpRoFUvAaBZHQKl2aULUkOZ1fZQoaAZoCWgPQwiY+nlTkUpvQJSGlFKUaBVNGwFoFkdAqXaBhvze43V9lChoBmgJaA9DCBSX4xWIxHBAlIaUUpRoFUvNaBZHQKl2lWbwz+F1fZQoaAZoCWgPQwigG5qyUyJyQJSGlFKUaBVL+2gWR0Cpdudk8RthdX2UKGgGaAloD0MIinPU0fEYc0CUhpRSlGgVS9JoFkdAqXbylYU343V9lChoBmgJaA9DCDwSL0/n3nBAlIaUUpRoFUvgaBZHQKl3Py1eBxx1fZQoaAZoCWgPQwgXYvVH2FtwQJSGlFKUaBVL2mgWR0Cpd5OW0JF9dX2UKGgGaAloD0MIh99Nt2z8YECUhpRSlGgVTegDaBZHQKl3th99c8l1fZQoaAZoCWgPQwilhGBVvWhwQJSGlFKUaBVL0GgWR0CpeAAzHjp+dX2UKGgGaAloD0MInNuEe2V5b0CUhpRSlGgVS9ZoFkdAqXgx0uDjBHV9lChoBmgJaA9DCOPiqNxEHnBAlIaUUpRoFU0BAWgWR0CpeFug6EJ0dX2UKGgGaAloD0MIYtaLodxLckCUhpRSlGgVS+NoFkdAqXiN5KODJ3V9lChoBmgJaA9DCJsff2kRgXFAlIaUUpRoFUu3aBZHQKl4mRW912d1fZQoaAZoCWgPQwjc2sLzEhxyQJSGlFKUaBVL9WgWR0CpeKXDvVmSdX2UKGgGaAloD0MI2zUhrTG7cUCUhpRSlGgVS7VoFkdAqXipiXpnpXV9lChoBmgJaA9DCKUw73FmS3FAlIaUUpRoFUvSaBZHQKl41+irT6V1fZQoaAZoCWgPQwiDiNS0SytyQJSGlFKUaBVLuWgWR0CpeRNahYeUdX2UKGgGaAloD0MINxrAWyBPbkCUhpRSlGgVS+BoFkdAqXkyqp97W3V9lChoBmgJaA9DCH7IW67+X3BAlIaUUpRoFUvsaBZHQKl5teVLSNR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo_lunar_lander_v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43aab891fbdcfa37cff5b416421788a6d02932e62b318ee9ad2fcd4874a6f9d9
|
3 |
+
size 147317
|
ppo_lunar_lander_v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo_lunar_lander_v1/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fed32d2f790>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fed32d2f820>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fed32d2f8b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fed32d2f940>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fed32d2f9d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fed32d2fa60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fed32d2faf0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fed32d2fb80>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fed32d2fc10>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fed32d2fca0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fed32d2fd30>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fed32d2fdc0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fed32d25930>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000.0,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673726906256798937,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1fKz5PkmO8zr4/OwDhZLlgW8C9jkZ4ugAAgD8AAIA/ZiRdvSojSD7yNAM/FiirviW5qj7axky9AAAAAAAAAADmk6K9FBSHuhEggTd+K6oyA/qQOdpVlrYAAIA/AACAP01OT707oIs/r2MnvlTiEL8ADbu9erQQvQAAAAAAAAAAmv+pvURtlT71SlQ+9pGYvqugtTwsyIM9AAAAAAAAAABmxtk9SCmCun02BrwsmCk1TOYbuzqlkrQAAAAAAACAP4b4Or7AGoE+qbeEPlVLm77c/tw8OLBwPQAAAAAAAAAAQDDiPW//Sj0S4Ai+NLYyvvMAwryQFci9AAAAAAAAAAAzg3w74TrUuEKW87b6YyeyZNoJPHGtFTYAAIA/AACAP00BdD3pd0Q/rg5XvEB0Dr/7ntg9cPdVPQAAAAAAAAAAeskvPlwcYryMJEi4HIJBN1U9vr2bdJo3AACAPwAAgD+a2Zw97AyQPBvRFb5+DBO+540uvUqyGzwAAAAAAAAAAOYvCD7D8hQ9HLiQvU38F75UpDw8xeTBuwAAAAAAAAAAjZT5vdsU7j5Vcag9ALGaviV/Vb2PjRY9AAAAAAAAAACtBDu+CJzKPlhLFT1/ut6+BLTXvFW/dD0AAAAAAAAAAO3Rkj7nxYg+vaRovnZRsL4aGqi8hozKvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVLxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpfljWhs7cUCUhpRSlIwBbJRLw4wBdJRHQKlkzVvuPWB1fZQoaAZoCWgPQwiZZOQsrBdwQJSGlFKUaBVL2WgWR0CpZTYI8hcJdX2UKGgGaAloD0MITyMtlTfLcUCUhpRSlGgVS75oFkdAqWVNXo1UEXV9lChoBmgJaA9DCEFGQIVjLnNAlIaUUpRoFU1XAWgWR0CpZV6sySFHdX2UKGgGaAloD0MIF7g81gydcECUhpRSlGgVS9NoFkdAqWVpGYrrgXV9lChoBmgJaA9DCBTpfk7BpnJAlIaUUpRoFUvuaBZHQKlljQfIS151fZQoaAZoCWgPQwhrRZvjnCZwQJSGlFKUaBVL0WgWR0CpZYvYODradX2UKGgGaAloD0MIPKBsylWIcUCUhpRSlGgVS8NoFkdAqWXFEd/8VHV9lChoBmgJaA9DCEoLl1WY23JAlIaUUpRoFU1xAWgWR0CpZgmZ/kNndX2UKGgGaAloD0MIgbBTrBpJcECUhpRSlGgVS7VoFkdAqWYezMRpUXV9lChoBmgJaA9DCP5+MVuy83BAlIaUUpRoFUvKaBZHQKlmLUtqYZ51fZQoaAZoCWgPQwjBNuLJbnNxQJSGlFKUaBVL8GgWR0CpZjzy8SPEdX2UKGgGaAloD0MIDYl7LH1AckCUhpRSlGgVS95oFkdAqWZJWq94/3V9lChoBmgJaA9DCMgKfhti/XBAlIaUUpRoFUvUaBZHQKlmU7cwg1Z1fZQoaAZoCWgPQwit26D2WwBvQJSGlFKUaBVLy2gWR0CpZl+p4rz5dX2UKGgGaAloD0MIo5HPK15jckCUhpRSlGgVS/5oFkdAqWZ0b1h9cHV9lChoBmgJaA9DCCR+xRpu0XBAlIaUUpRoFUvdaBZHQKlnE938n/l1fZQoaAZoCWgPQwhn0TsVcDdxQJSGlFKUaBVLxmgWR0CpZ2xTbWVedX2UKGgGaAloD0MIwePbu4Z/cUCUhpRSlGgVS8toFkdAqWdwWFev6nV9lChoBmgJaA9DCKSoM/eQfXFAlIaUUpRoFUuvaBZHQKlnk86FM7F1fZQoaAZoCWgPQwgnT1lNF1NyQJSGlFKUaBVL72gWR0CpZ7GqHXVcdX2UKGgGaAloD0MIKV/QQoKJckCUhpRSlGgVS/loFkdAqWgs/MW43HV9lChoBmgJaA9DCM7drpdmE3FAlIaUUpRoFUvTaBZHQKloZxm03Ox1fZQoaAZoCWgPQwhKs3kcxoByQJSGlFKUaBVL0mgWR0CpaKMVLzwudX2UKGgGaAloD0MIE7ngDL6mckCUhpRSlGgVS99oFkdAqWjAmzByj3V9lChoBmgJaA9DCDdPdcjNGHFAlIaUUpRoFUv4aBZHQKlo1zKcNH91fZQoaAZoCWgPQwhjesISjyxxQJSGlFKUaBVL4WgWR0CpaOVbiZOSdX2UKGgGaAloD0MIopxoVyE9ckCUhpRSlGgVS/toFkdAqWlKlrM1THV9lChoBmgJaA9DCMcS1sYYCnNAlIaUUpRoFU1gAWgWR0CpaYvpQk5ZdX2UKGgGaAloD0MIwcjLmti9cECUhpRSlGgVS69oFkdAqWmkCLdepnV9lChoBmgJaA9DCInPnWC/uXFAlIaUUpRoFUvYaBZHQKlqK9K28Zl1fZQoaAZoCWgPQwhPHhZqDQhxQJSGlFKUaBVNDQFoFkdAqWqD4i5d4XV9lChoBmgJaA9DCE0uxsB6GHFAlIaUUpRoFUvzaBZHQKlqxH4Glhx1fZQoaAZoCWgPQwiNs+kIYLNxQJSGlFKUaBVNXwFoFkdAqWrPLRrrPnV9lChoBmgJaA9DCI0OSML+nHBAlIaUUpRoFU0FAWgWR0Cpayo5PuXvdX2UKGgGaAloD0MIxxNBnEdZcECUhpRSlGgVS91oFkdAqWtpIDoyK3V9lChoBmgJaA9DCCPdzymIFXFAlIaUUpRoFUvbaBZHQKlrsb+98JF1fZQoaAZoCWgPQwhPllrvt8hwQJSGlFKUaBVNBwFoFkdAqWu7zK9wm3V9lChoBmgJaA9DCMGnOXkRqHFAlIaUUpRoFUvmaBZHQKlr6/s3Q2N1fZQoaAZoCWgPQwi2niEcsxpyQJSGlFKUaBVL7GgWR0CpbA4uTRpldX2UKGgGaAloD0MIAALWql2IcUCUhpRSlGgVS7poFkdAqWwSe5Fw1nV9lChoBmgJaA9DCDSEY5Y9L3FAlIaUUpRoFU1HAWgWR0CpbQHxJ/XodX2UKGgGaAloD0MIxsA6jp+/bkCUhpRSlGgVS9xoFkdAqW0q/oJRfnV9lChoBmgJaA9DCKMDkrBvBHNAlIaUUpRoFU0gAWgWR0CpbTJSrHU+dX2UKGgGaAloD0MIIEYIj/ZhcECUhpRSlGgVS7ZoFkdAqW1ApYs/ZHV9lChoBmgJaA9DCPLTuDf/d3FAlIaUUpRoFUvqaBZHQKlts7FKkEd1fZQoaAZoCWgPQwjkZrgBXzpwQJSGlFKUaBVLw2gWR0Cpbc08mrsCdX2UKGgGaAloD0MI323eOOm/cUCUhpRSlGgVS+poFkdAqW3x0MgEEHV9lChoBmgJaA9DCBMro5GPc3FAlIaUUpRoFUvFaBZHQKlub2Dg62h1fZQoaAZoCWgPQwhSuB6F67ZxQJSGlFKUaBVL8mgWR0Cpbse9Jz1cdX2UKGgGaAloD0MIEwznGqYfcUCUhpRSlGgVS+RoFkdAqW7l4zJp4HV9lChoBmgJaA9DCAwjvajdWXNAlIaUUpRoFUv2aBZHQKlvbKq4pc51fZQoaAZoCWgPQwh1sP7PIe9yQJSGlFKUaBVL+mgWR0Cpb6kiUxEfdX2UKGgGaAloD0MIo3N+iiNhc0CUhpRSlGgVTQIBaBZHQKlvwhpxm051fZQoaAZoCWgPQwindoaprexxQJSGlFKUaBVLvmgWR0Cpb/1psXSCdX2UKGgGaAloD0MImQ0yyUi6b0CUhpRSlGgVS8BoFkdAqXATT2FnI3V9lChoBmgJaA9DCFLvqZx20XFAlIaUUpRoFUvyaBZHQKlwkUMXrMV1fZQoaAZoCWgPQwg+BcB4RrlyQJSGlFKUaBVLxmgWR0CpcL6JqIrOdX2UKGgGaAloD0MI93R1x+JYcUCUhpRSlGgVS8poFkdAqXD1DQZ4wHV9lChoBmgJaA9DCMNi1LX2aHJAlIaUUpRoFUv8aBZHQKlxdZ+x4Y91fZQoaAZoCWgPQwiISE272CtxQJSGlFKUaBVLtWgWR0CpcXpyhi9adX2UKGgGaAloD0MIqYQn9DofcUCUhpRSlGgVS9ZoFkdAqXIcp7TlT3V9lChoBmgJaA9DCKG/0CPGQW5AlIaUUpRoFU0FAWgWR0CpcnD+JgstdX2UKGgGaAloD0MIkJ+NXDdGYUCUhpRSlGgVTegDaBZHQKlyizBRAKR1fZQoaAZoCWgPQwgfSrTkccpwQJSGlFKUaBVL0mgWR0CpcqMxwhnrdX2UKGgGaAloD0MI5x2n6AhUcUCUhpRSlGgVS61oFkdAqXK9urIYFnV9lChoBmgJaA9DCD1/2qhOrHBAlIaUUpRoFUvaaBZHQKly9xd6cAl1fZQoaAZoCWgPQwiRfCWQUuBxQJSGlFKUaBVL6GgWR0Cpc353kgfVdX2UKGgGaAloD0MIE+8ATxpYcUCUhpRSlGgVS9JoFkdAqXPDm6oVEnV9lChoBmgJaA9DCOSByCLNym9AlIaUUpRoFUvGaBZHQKlzwv8qFyt1fZQoaAZoCWgPQwivXkVGh5xhQJSGlFKUaBVN6ANoFkdAqXPHEMspX3V9lChoBmgJaA9DCH46HjPQTnFAlIaUUpRoFUvTaBZHQKl0HGgBcRl1fZQoaAZoCWgPQwhj8DDt2yNwQJSGlFKUaBVLvmgWR0CpdES925hCdX2UKGgGaAloD0MI7+L9uP3zbUCUhpRSlGgVS95oFkdAqXS4f+0gKXV9lChoBmgJaA9DCNvebkkOAnFAlIaUUpRoFUvPaBZHQKl1Fe2NNrV1fZQoaAZoCWgPQwi8ytqmuGxyQJSGlFKUaBVL0GgWR0CpdV/SH/LldX2UKGgGaAloD0MIzXhb6bV8cECUhpRSlGgVTYkBaBZHQKl1hLowEhd1fZQoaAZoCWgPQwhf7L344ihwQJSGlFKUaBVLvGgWR0CpdZy8J2MbdX2UKGgGaAloD0MIk8X9R6YgcUCUhpRSlGgVS9doFkdAqXW+h7E5yXV9lChoBmgJaA9DCErToGgewXFAlIaUUpRoFU0JAWgWR0Cpdlnv2GqQdX2UKGgGaAloD0MIDRmPUsm9cUCUhpRSlGgVS71oFkdAqXZf8IiTuHV9lChoBmgJaA9DCH3KMVkcznFAlIaUUpRoFUvAaBZHQKl2aULUkOZ1fZQoaAZoCWgPQwiY+nlTkUpvQJSGlFKUaBVNGwFoFkdAqXaBhvze43V9lChoBmgJaA9DCBSX4xWIxHBAlIaUUpRoFUvNaBZHQKl2lWbwz+F1fZQoaAZoCWgPQwigG5qyUyJyQJSGlFKUaBVL+2gWR0Cpdudk8RthdX2UKGgGaAloD0MIinPU0fEYc0CUhpRSlGgVS9JoFkdAqXbylYU343V9lChoBmgJaA9DCDwSL0/n3nBAlIaUUpRoFUvgaBZHQKl3Py1eBxx1fZQoaAZoCWgPQwgXYvVH2FtwQJSGlFKUaBVL2mgWR0Cpd5OW0JF9dX2UKGgGaAloD0MIh99Nt2z8YECUhpRSlGgVTegDaBZHQKl3th99c8l1fZQoaAZoCWgPQwilhGBVvWhwQJSGlFKUaBVL0GgWR0CpeAAzHjp+dX2UKGgGaAloD0MInNuEe2V5b0CUhpRSlGgVS9ZoFkdAqXgx0uDjBHV9lChoBmgJaA9DCOPiqNxEHnBAlIaUUpRoFU0BAWgWR0CpeFug6EJ0dX2UKGgGaAloD0MIYtaLodxLckCUhpRSlGgVS+NoFkdAqXiN5KODJ3V9lChoBmgJaA9DCJsff2kRgXFAlIaUUpRoFUu3aBZHQKl4mRW912d1fZQoaAZoCWgPQwjc2sLzEhxyQJSGlFKUaBVL9WgWR0CpeKXDvVmSdX2UKGgGaAloD0MI2zUhrTG7cUCUhpRSlGgVS7VoFkdAqXipiXpnpXV9lChoBmgJaA9DCKUw73FmS3FAlIaUUpRoFUvSaBZHQKl41+irT6V1fZQoaAZoCWgPQwiDiNS0SytyQJSGlFKUaBVLuWgWR0CpeRNahYeUdX2UKGgGaAloD0MINxrAWyBPbkCUhpRSlGgVS+BoFkdAqXkyqp97W3V9lChoBmgJaA9DCH7IW67+X3BAlIaUUpRoFUvsaBZHQKl5teVLSNR1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 310,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo_lunar_lander_v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c60fa7c80368c2536c331fb69e968322cc9211a39670a31f6a0433f852bdf7d0
|
3 |
+
size 87929
|
ppo_lunar_lander_v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a46cdb14b03432ee51cad07a74705f4be39be364978e2bcc2db8c7f120503569
|
3 |
+
size 43393
|
ppo_lunar_lander_v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo_lunar_lander_v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (203 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 267.1428858925943, "std_reward": 14.487782501732736, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-14T21:09:08.709880"}
|