t5-cnndm / README.md
ryusangwon's picture
Model save
79b9d23 verified
|
raw
history blame
3.78 kB
metadata
license: apache-2.0
base_model: google-t5/t5-base
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: cnn_dailymail_350_t5-base
    results: []

cnn_dailymail_350_t5-base

This model is a fine-tuned version of google-t5/t5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8973
  • Rouge1: 0.2524
  • Rouge2: 0.1238
  • Rougel: 0.2084
  • Rougelsum: 0.2083
  • Gen Len: 18.9993

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
0.8756 0.45 500 0.9285 0.2483 0.1206 0.2051 0.2051 18.9993
0.8719 0.89 1000 0.9147 0.2496 0.1221 0.2063 0.2062 18.9999
0.8407 1.34 1500 0.9101 0.2497 0.1217 0.2061 0.2061 18.9999
0.8433 1.78 2000 0.9054 0.2512 0.1225 0.2072 0.2072 18.9995
0.8346 2.23 2500 0.9048 0.2515 0.123 0.2074 0.2074 18.9998
0.8308 2.67 3000 0.9037 0.2504 0.1226 0.2073 0.2073 18.9996
0.8189 3.12 3500 0.9022 0.2517 0.1232 0.2082 0.2081 19.0
0.8275 3.57 4000 0.9011 0.2514 0.123 0.2076 0.2076 19.0
0.8272 4.01 4500 0.9010 0.2517 0.1236 0.2081 0.2081 18.9993
0.819 4.46 5000 0.8994 0.2517 0.1235 0.208 0.2079 18.999
0.8096 4.9 5500 0.9001 0.2518 0.1236 0.208 0.208 18.9992
0.823 5.35 6000 0.8976 0.2519 0.1232 0.208 0.208 18.9993
0.8205 5.8 6500 0.8979 0.2516 0.1234 0.2079 0.2079 18.9996
0.8136 6.24 7000 0.8981 0.2515 0.1232 0.2078 0.2078 18.9992
0.8117 6.69 7500 0.8984 0.2519 0.1236 0.2081 0.208 18.9996
0.8039 7.13 8000 0.8979 0.2524 0.1237 0.2083 0.2083 18.9993
0.7934 7.58 8500 0.8981 0.2517 0.1235 0.2078 0.2078 18.9992
0.7947 8.02 9000 0.8979 0.252 0.1237 0.2081 0.2081 18.9989
0.8189 8.47 9500 0.8974 0.2523 0.1237 0.2083 0.2083 18.999
0.8102 8.92 10000 0.8976 0.2523 0.1237 0.2084 0.2084 18.9991
0.8029 9.36 10500 0.8978 0.2523 0.1237 0.2083 0.2083 18.9992
0.8004 9.81 11000 0.8973 0.2524 0.1238 0.2084 0.2083 18.9993

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.15.0
  • Tokenizers 0.15.0