retriva-bert-preference-classifier
This model is a fine-tuned version of retrieva-jp/bert-1.3b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4714
- Accuracy: 0.737
- Precision: 0.7423
- Recall: 0.726
- F1: 0.7341
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.6438 | 0.0080 | 100 | 0.6116 | 0.663 | 0.8721 | 0.382 | 0.5313 |
0.5113 | 0.0160 | 200 | 0.5442 | 0.699 | 0.6736 | 0.772 | 0.7195 |
0.4512 | 0.0240 | 300 | 0.5119 | 0.717 | 0.8359 | 0.54 | 0.6561 |
0.3916 | 0.0321 | 400 | 0.4936 | 0.702 | 0.7295 | 0.642 | 0.6830 |
0.3806 | 0.0401 | 500 | 0.4763 | 0.715 | 0.7708 | 0.612 | 0.6823 |
0.3581 | 0.0481 | 600 | 0.4597 | 0.754 | 0.75 | 0.762 | 0.7560 |
0.3308 | 0.0561 | 700 | 0.4690 | 0.742 | 0.7738 | 0.684 | 0.7261 |
0.3458 | 0.0641 | 800 | 0.4703 | 0.737 | 0.7423 | 0.726 | 0.7341 |
0.3475 | 0.0721 | 900 | 0.4728 | 0.737 | 0.7495 | 0.712 | 0.7303 |
0.3435 | 0.0801 | 1000 | 0.4714 | 0.737 | 0.7423 | 0.726 | 0.7341 |
Evaluation on test split
Framework versions
- Transformers 4.43.1
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 3
Inference API (serverless) does not yet support model repos that contain custom code.
Model tree for ryota39/retriva-bert-preference-classifier
Base model
retrieva-jp/bert-1.3b