Reward Model for Japanese
Collection
日本語データセットで報酬モデルを作る取り組み
•
7 items
•
Updated
•
1
train loss | eval loss | accuracy | recall | precision | f1-score |
---|---|---|---|---|---|
0.114 | 0.1615 | 0.9399 | 0.9459 | 0.9346 | 0.9402 |
accuracy | recall | precision | f1-score |
---|---|---|---|
0.9416 | 0.9319 | 0.9504 | 0.9411 |
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.4109 | 1.0 | 1479 | 0.2462 | 0.9003 | 0.8710 | 0.9399 | 0.9041 |
0.1579 | 2.0 | 2958 | 0.1573 | 0.9399 | 0.9495 | 0.9293 | 0.9393 |
0.114 | 3.0 | 4437 | 0.1615 | 0.9399 | 0.9346 | 0.9460 | 0.9403 |
Base model
studio-ousia/mluke-large-lite