bert-small-finetuned

This model is a fine-tuned version of prajjwal1/bert-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0048
  • Accuracy: 0.6038
  • F1 Score: 0.6018

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 86
  • eval_batch_size: 86
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Score
1.3167 1.0 18 1.2414 0.4151 0.3857
1.1845 2.0 36 1.1500 0.5148 0.5148
1.0823 3.0 54 1.0743 0.5499 0.5543
0.995 4.0 72 1.0359 0.5553 0.5529
0.9242 5.0 90 1.0195 0.5849 0.5781
0.8742 6.0 108 1.0028 0.5741 0.5758
0.8237 7.0 126 1.0033 0.5930 0.5901
0.7893 8.0 144 0.9967 0.5930 0.5922
0.7332 9.0 162 1.0088 0.5957 0.5924
0.6997 10.0 180 1.0048 0.6038 0.6018
0.6836 11.0 198 1.0120 0.6011 0.5981
0.6571 12.0 216 1.0084 0.5849 0.5864
0.6253 13.0 234 1.0167 0.5903 0.5938
0.5902 14.0 252 1.0184 0.5930 0.5965
0.5766 15.0 270 1.0340 0.5930 0.5925
0.5591 16.0 288 1.0399 0.5930 0.5931
0.5353 17.0 306 1.0364 0.5930 0.5944
0.5205 18.0 324 1.0412 0.5876 0.5889
0.5197 19.0 342 1.0410 0.5849 0.5867
0.5222 20.0 360 1.0418 0.5984 0.5990

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
16
Safetensors
Model size
28.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ryantaw/bert-small-finetuned

Finetuned
(12)
this model
Finetunes
1 model