10M_iterations_64_batch
Browse files- LunarLander10M_64.zip +3 -0
- LunarLander10M_64/_stable_baselines3_version +1 -0
- LunarLander10M_64/data +94 -0
- LunarLander10M_64/policy.optimizer.pth +3 -0
- LunarLander10M_64/policy.pth +3 -0
- LunarLander10M_64/pytorch_variables.pth +3 -0
- LunarLander10M_64/system_info.txt +7 -0
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
LunarLander10M_64.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:303977a06cad2b4eabf58bf49ef3ccec876e067ebba1f497d633d1a4a27b8fe6
|
3 |
+
size 146721
|
LunarLander10M_64/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
LunarLander10M_64/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f695c6f5160>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f695c6f51f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f695c6f5280>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f695c6f5310>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f695c6f53a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f695c6f5430>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f695c6f54c0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f695c6f5550>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f695c6f55e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f695c6f5670>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f695c6f5700>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f695c6f3a80>"
|
20 |
+
},
|
21 |
+
"verbose": 0,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 10010624,
|
46 |
+
"_total_timesteps": 10000000.0,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671023773861668087,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGASKz5nPog/KL3PPimvE7+/YqU+V7+8PgAAAAAAAAAAmuKQPSxkrz/Hipo+8ze1viIBJj7jgIY+AAAAAAAAAABNlaM9qWq2P9p2uD7ncGS+O6s7Pp5mmj4AAAAAAAAAADOX+zt7TIe6qIoYtMdpB69ABCM7QR6vMwAAgD8AAIA/mj+fPMPZPboiQ9q69rgxtvuqPDsGbv45AAAAAAAAgD9mQli8e9qMupxqtznt6O64SUiFugCcubgAAIA/AACAP2aWt7ysIvA8PHumvN17rr5ogBG+y6WavQAAAAAAAAAAzQh4PPZsXbpOfUq5M6Y5tFUONDpFuG04AACAPwAAgD/TZEW+BY3/PoJnLD4Mxy2/niPovoqMLj4AAAAAAAAAALMYSD2hYra8+tFovi+9wL3fsUC7dd1SPgAAgD8AAIA/mknuPMPoW7xlw/a89+UEPV9NTj2j8QA7AACAPwAAgD+gPY4+u009PzKMdL7wvFK/nF3iPtxtmr4AAAAAAAAAAE11Zz2vfBc+2lunvkov474zOge7vmt4vgAAAAAAAAAAzdUOPWxTv7vD8bC7wlSxPHyuCj0qvJS9AACAPwAAgD+tkyk+Xq0BP2ALcL0+qD+/zsHRPrNFKL4AAAAAAAAAAO2OMD5fDRs/hlh/PBu3OL+Kkts+J78IvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0010623999999999079,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInE6y1eVGcUCUhpRSlIwBbJRLrYwBdJRHQLJrZsvIwM91fZQoaAZoCWgPQwjcErngzNlxQJSGlFKUaBVLo2gWR0Cya34R28qXdX2UKGgGaAloD0MIStQLPg3zckCUhpRSlGgVS69oFkdAsmt/uRcNY3V9lChoBmgJaA9DCHYyOEpeenJAlIaUUpRoFUuwaBZHQLJrgAAhje91fZQoaAZoCWgPQwgIjsu4qU1yQJSGlFKUaBVLymgWR0Cya5N7ngYQdX2UKGgGaAloD0MIfcucLkttc0CUhpRSlGgVS8hoFkdAsmuhtGd7OXV9lChoBmgJaA9DCPDd5o0TDXNAlIaUUpRoFUvGaBZHQLJrsFx4ptt1fZQoaAZoCWgPQwiNCpxsw9VyQJSGlFKUaBVLyGgWR0Cya7IHkcS5dX2UKGgGaAloD0MICOdTx+qhcECUhpRSlGgVS6poFkdAsmu1bgTAWXV9lChoBmgJaA9DCEMglzjy23NAlIaUUpRoFUvGaBZHQLJruCWeHzp1fZQoaAZoCWgPQwj7O9ujt95yQJSGlFKUaBVLtGgWR0Cya8tPgvUSdX2UKGgGaAloD0MIYRvxZPezckCUhpRSlGgVS4hoFkdAsmveEf1YhnV9lChoBmgJaA9DCP/PYb68XnNAlIaUUpRoFUuxaBZHQLJumhyKekJ1fZQoaAZoCWgPQwjsNNJS+Q9zQJSGlFKUaBVLr2gWR0Cybpyml67edX2UKGgGaAloD0MIZwsIrcduc0CUhpRSlGgVS7BoFkdAsm6hMBZIQXV9lChoBmgJaA9DCGk50ENtcXJAlIaUUpRoFUvGaBZHQLJur9deIEd1fZQoaAZoCWgPQwgaa39nu3RxQJSGlFKUaBVLpWgWR0CybrlKsdT6dX2UKGgGaAloD0MIXwzlRDtxcECUhpRSlGgVS7VoFkdAsm7I078vVXV9lChoBmgJaA9DCF8KD5qd6nFAlIaUUpRoFUvzaBZHQLJu0sANoal1fZQoaAZoCWgPQwgQIhly7I9xQJSGlFKUaBVLx2gWR0CybtYsVclgdX2UKGgGaAloD0MIqoHmcy7ecECUhpRSlGgVS6NoFkdAsm7uNxVAA3V9lChoBmgJaA9DCNfc0f8yRHJAlIaUUpRoFUvOaBZHQLJu8ZOSGJx1fZQoaAZoCWgPQwh2OLpK9wFyQJSGlFKUaBVLrWgWR0CybvM3yZrpdX2UKGgGaAloD0MIkWEVbyQic0CUhpRSlGgVS7loFkdAsm79hkRSP3V9lChoBmgJaA9DCI/Ey9P5JXRAlIaUUpRoFUvQaBZHQLJvA/82rGR1fZQoaAZoCWgPQwhNamgDMNxzQJSGlFKUaBVLzGgWR0CybxIG6f8NdX2UKGgGaAloD0MIUmNCzOXPckCUhpRSlGgVS8RoFkdAsm8fldTo+3V9lChoBmgJaA9DCCbfbHMjm3JAlIaUUpRoFUu1aBZHQLJvJPomoit1fZQoaAZoCWgPQwjvx+2XDzNzQJSGlFKUaBVLo2gWR0Cybyba7EpBdX2UKGgGaAloD0MIhleSPNfXOECUhpRSlGgVS2poFkdAsm8r5mAbynV9lChoBmgJaA9DCFQaMbMPHXJAlIaUUpRoFUujaBZHQLJvLq+8Gs51fZQoaAZoCWgPQwg0gSIWMRxxQJSGlFKUaBVLu2gWR0CybzzvqkdndX2UKGgGaAloD0MIFJUNa6ofcUCUhpRSlGgVS6VoFkdAsm9ETzundnV9lChoBmgJaA9DCJUrvMuFTnRAlIaUUpRoFUvIaBZHQLJvWgZjx1B1fZQoaAZoCWgPQwi1UZ0OpCNxQJSGlFKUaBVLrGgWR0Cyb1oI8hcJdX2UKGgGaAloD0MI2J3uPPGZcECUhpRSlGgVS6toFkdAsm9plQMx5HV9lChoBmgJaA9DCGVR2EURqHBAlIaUUpRoFUu2aBZHQLJvkULDye91fZQoaAZoCWgPQwiuDoC4awhzQJSGlFKUaBVLwmgWR0Cyb5bowEhadX2UKGgGaAloD0MIwCFUqdmXckCUhpRSlGgVS7hoFkdAsm+exA0KqnV9lChoBmgJaA9DCA9EFmmiGHNAlIaUUpRoFUu2aBZHQLJvpWbgCOp1fZQoaAZoCWgPQwgcQSrFTqJyQJSGlFKUaBVLo2gWR0Cyb7Luc+aCdX2UKGgGaAloD0MI2C5tOOwJcUCUhpRSlGgVS6BoFkdAsm/CWnjyWnV9lChoBmgJaA9DCIS9iSF5T3FAlIaUUpRoFUutaBZHQLJvyBcRlH11fZQoaAZoCWgPQwhkA+liUy1yQJSGlFKUaBVLqmgWR0Cyb82VzIV/dX2UKGgGaAloD0MISWjLuVQ9dECUhpRSlGgVS9BoFkdAsm/XGPxQSHV9lChoBmgJaA9DCKbTug0qlHRAlIaUUpRoFUvJaBZHQLJv42Qnx8V1fZQoaAZoCWgPQwj5LM+DO2xzQJSGlFKUaBVLxWgWR0Cyb/2o3rD7dX2UKGgGaAloD0MIxEFClC/dc0CUhpRSlGgVS7xoFkdAsm//VLBbfXV9lChoBmgJaA9DCKTFGcOcHXJAlIaUUpRoFUuqaBZHQLJwA9XtBv91fZQoaAZoCWgPQwi78e7IWJxzQJSGlFKUaBVLv2gWR0CycCFlXiiqdX2UKGgGaAloD0MIFqQZi+aVckCUhpRSlGgVS7FoFkdAsnAkHGCI13V9lChoBmgJaA9DCCklBKuquHFAlIaUUpRoFUuvaBZHQLJwU9Q40dl1fZQoaAZoCWgPQwguAmN9w5xzQJSGlFKUaBVLt2gWR0CycFc1Gb1AdX2UKGgGaAloD0MIajANw8chc0CUhpRSlGgVS7doFkdAsnBkbS7XhHV9lChoBmgJaA9DCJbNHJKapHFAlIaUUpRoFUuzaBZHQLJwZpFkQPJ1fZQoaAZoCWgPQwg+tI8VfBRwQJSGlFKUaBVLmWgWR0CycG14keIVdX2UKGgGaAloD0MIlfCEXn9USUCUhpRSlGgVS3loFkdAsnB/1schknV9lChoBmgJaA9DCCGRtvFne3BAlIaUUpRoFUuyaBZHQLJwifGdZq51fZQoaAZoCWgPQwgz+tFwiqlzQJSGlFKUaBVLwGgWR0CycIzfaYeDdX2UKGgGaAloD0MIfPFFe3zKc0CUhpRSlGgVS9doFkdAsnCXPRiPQ3V9lChoBmgJaA9DCGnFNxQ+23FAlIaUUpRoFUuSaBZHQLJwmcmBvrJ1fZQoaAZoCWgPQwgUyy2txkdyQJSGlFKUaBVLs2gWR0CycJ7blA/tdX2UKGgGaAloD0MIa4DSUKMLckCUhpRSlGgVS8toFkdAsnCpBSk0rXV9lChoBmgJaA9DCBjshm3LVHFAlIaUUpRoFUuWaBZHQLJwtSWJJoV1fZQoaAZoCWgPQwj8471q5YFyQJSGlFKUaBVLvGgWR0CycMjsQd0adX2UKGgGaAloD0MIIO9VKxOFckCUhpRSlGgVS7loFkdAsnDZesxO+XV9lChoBmgJaA9DCKdaC7PQskVAlIaUUpRoFUtkaBZHQLJw7YBNmDl1fZQoaAZoCWgPQwikVS3p6DxwQJSGlFKUaBVLn2gWR0CycPAnUlRhdX2UKGgGaAloD0MIX7cIjHVPcECUhpRSlGgVS6poFkdAsnD5+y7f53V9lChoBmgJaA9DCMRCrWleR3FAlIaUUpRoFUufaBZHQLJw/o60Y0l1fZQoaAZoCWgPQwgVOxqHuhhwQJSGlFKUaBVLsmgWR0CycRDZL7GedX2UKGgGaAloD0MI+wPltr05ckCUhpRSlGgVS6doFkdAsnEjQswta3V9lChoBmgJaA9DCGVyamcYOnJAlIaUUpRoFUuraBZHQLJxNIP9UCJ1fZQoaAZoCWgPQwjPh2cJcl5yQJSGlFKUaBVLm2gWR0CycTlq8DjjdX2UKGgGaAloD0MITODW3Xzrc0CUhpRSlGgVS+JoFkdAsnFNWS2Yv3V9lChoBmgJaA9DCKmgoupXzm9AlIaUUpRoFUu8aBZHQLJxUcPe54J1fZQoaAZoCWgPQwiTOgFNRLlyQJSGlFKUaBVLqWgWR0CycV4A80UHdX2UKGgGaAloD0MIrI2xEx73ckCUhpRSlGgVS8RoFkdAsnFtIGyHEnV9lChoBmgJaA9DCN9OIsK/m3JAlIaUUpRoFUvaaBZHQLJxcjkuHvd1fZQoaAZoCWgPQwjlYaHWdBdyQJSGlFKUaBVLlmgWR0CycYU3bVSXdX2UKGgGaAloD0MIj6hQ3VyYckCUhpRSlGgVS5hoFkdAsnGRyq+8G3V9lChoBmgJaA9DCCRIpdhRn3BAlIaUUpRoFUu6aBZHQLJxk3dKujh1fZQoaAZoCWgPQwhEqFKzx/FzQJSGlFKUaBVL0GgWR0CycZV2q1gIdX2UKGgGaAloD0MIq7GEtTHPcUCUhpRSlGgVS71oFkdAsnG8mLLpzXV9lChoBmgJaA9DCB6oUx7da3NAlIaUUpRoFUuqaBZHQLJxvwOe8PF1fZQoaAZoCWgPQwjRrkLKjwdzQJSGlFKUaBVL0mgWR0CyccU3wTdtdX2UKGgGaAloD0MICKpGr4bicECUhpRSlGgVS71oFkdAsnHkicG1QnV9lChoBmgJaA9DCGN+bmgK2HJAlIaUUpRoFUu0aBZHQLJx7gQHzH11fZQoaAZoCWgPQwi3mJ8bGit0QJSGlFKUaBVLtWgWR0CycfO8TSLJdX2UKGgGaAloD0MIe/mdJjMoR0CUhpRSlGgVS2RoFkdAsnH/L+xW1nV9lChoBmgJaA9DCJ5i1SDMfnFAlIaUUpRoFUvCaBZHQLJyEw1BMSN1fZQoaAZoCWgPQwglIZG2cZhwQJSGlFKUaBVLqmgWR0CychpyQxN7dX2UKGgGaAloD0MI2su201Zjc0CUhpRSlGgVS7NoFkdAsnIsAZKnN3V9lChoBmgJaA9DCNSBrKeWVXRAlIaUUpRoFUvWaBZHQLJyLgmqo611fZQoaAZoCWgPQwjMQGX8u8BxQJSGlFKUaBVLsGgWR0Cycj5d0JWvdX2UKGgGaAloD0MIq3e4HVrxc0CUhpRSlGgVS+NoFkdAsnJKCEpRXXV9lChoBmgJaA9DCNemsb0WvnJAlIaUUpRoFUuwaBZHQLJyTK2a2F51fZQoaAZoCWgPQwi7ZBwjGSpzQJSGlFKUaBVLzGgWR0CycmcgZCOWdX2UKGgGaAloD0MI2SJpN3o1ckCUhpRSlGgVS6hoFkdAsnJtBJI1+HV9lChoBmgJaA9DCEolPKEXnnNAlIaUUpRoFUuraBZHQLJybvA44qB1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 2444,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
LunarLander10M_64/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19d54a3ef681f7ce281e51e1c6b5f524149aa9d7456e078bf293345bb5f4024f
|
3 |
+
size 87545
|
LunarLander10M_64/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3218346f36f61989f1a6edbca01d5afb570209535f22c06947991f0219d1d53
|
3 |
+
size 43073
|
LunarLander10M_64/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
LunarLander10M_64/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.225-1-MANJARO-x86_64-with-glibc2.36 #1 SMP PREEMPT Sat Nov 26 00:40:25 UTC 2022
|
2 |
+
Python: 3.9.0
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu117
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.23.5
|
7 |
+
Gym: 0.21.0
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 289.11 +/- 21.65
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f695c6f5160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f695c6f51f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f695c6f5280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f695c6f5310>", "_build": "<function ActorCriticPolicy._build at 0x7f695c6f53a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f695c6f5430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f695c6f54c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f695c6f5550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f695c6f55e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f695c6f5670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f695c6f5700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f695c6f3a80>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671019615971768691, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMBqW76Xwlg+TljCPnHDjb6Z/eA80iTSPQAAAAAAAAAAAJTgvE4ZxLyXHIg9o2jJu8jNK76+Rwy+AACAPwAAgD8AzLa7++fVPafFjb0O4r6+cm9DvW3UVjwAAAAAAAAAAICnkD2405Q/8gWePjQ4Lb93M+09MBkvPgAAAAAAAAAAmowPvUjDkLoOFYo3z7d2Mh+oCLrxvJ+2AACAPwAAgD9mHz69w0lPunSFPrpvK9001oiyOs3YXDkAAIA/AACAP5o6wT2zGSI/FaQnu6x9Cr+zdbE9Q4PUvQAAAAAAAAAAM7vru34XiT79Xds87CvYvovUfby8mSC9AAAAAAAAAABmroY8j2Z8uh5ORzUfCXYwVCbDOh4cUrQAAIA/AACAPxrzST0fLdm5LoLKNndLGrA3OdC7wtHttQAAgD8AAIA/4HJHvuGUrbyJEkG9oTawuza8FT7bnYo8AACAPwAAgD8zW9I7Xne0P5l0Jj8xFzu9DYfzu4/RFr4AAAAAAAAAAABw/ryBdbe8e33zPc+WCr3bTjO+E3LYvQAAgD8AAIA/c4ajPWcJHz/tsIG9rLcBvxxoZj0CFQe+AAAAAAAAAAAAcC49bK22u1sYQjzSgJU8vloqvbumfz0AAIA/AACAP5qYHL5C2Ac/e3dDvQcxE7/E0la+QyzhPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwr6dRITpcUCUhpRSlIwBbJRNBAGMAXSUR0CjtebjLjgidX2UKGgGaAloD0MImUuqtluucUCUhpRSlGgVS7toFkdAo7YA2/BWP3V9lChoBmgJaA9DCAAbECEutGVAlIaUUpRoFU3oA2gWR0CjtkG9YfW+dX2UKGgGaAloD0MIL058tWP+ckCUhpRSlGgVS91oFkdAo7ZG+yquKXV9lChoBmgJaA9DCKm+84sSbnFAlIaUUpRoFUvEaBZHQKO2hKV6eGx1fZQoaAZoCWgPQwgNOEvJ8sBxQJSGlFKUaBVLtGgWR0Cjtr9aUzKtdX2UKGgGaAloD0MI7PtwkJDybkCUhpRSlGgVS9FoFkdAo7bcORT0hHV9lChoBmgJaA9DCOlDF9S37XFAlIaUUpRoFUvdaBZHQKO285nUUfx1fZQoaAZoCWgPQwhrf2d7dExvQJSGlFKUaBVLvGgWR0CjtvYmLLpzdX2UKGgGaAloD0MIMepaex9OcECUhpRSlGgVS7ZoFkdAo7cJ/b0voXV9lChoBmgJaA9DCGeAC7JlnXBAlIaUUpRoFUu0aBZHQKO3SdQwbl11fZQoaAZoCWgPQwgd6KG2jTZwQJSGlFKUaBVNKwFoFkdAo7ddSQ5my3V9lChoBmgJaA9DCA6hSs3e9HJAlIaUUpRoFU0RAWgWR0Cjt6b+98JEdX2UKGgGaAloD0MITpfFxOavcECUhpRSlGgVS9JoFkdAo7fyOcUdrHV9lChoBmgJaA9DCHgJTn0gUXFAlIaUUpRoFUvtaBZHQKO39+z+m3x1fZQoaAZoCWgPQwhL5ljeldtxQJSGlFKUaBVL1WgWR0CjuASKNyYHdX2UKGgGaAloD0MI3PEmv8XIcUCUhpRSlGgVS9RoFkdAo7hlWGRFJHV9lChoBmgJaA9DCLZoAdoWnHFAlIaUUpRoFUvEaBZHQKO4hEmY0EZ1fZQoaAZoCWgPQwj1TC8x1sNyQJSGlFKUaBVL3WgWR0CjuIjp9qk/dX2UKGgGaAloD0MIFRqIZfMvckCUhpRSlGgVS/poFkdAo7iK+BYms3V9lChoBmgJaA9DCCNKe4OvynFAlIaUUpRoFUu1aBZHQKO4nVMEidJ1fZQoaAZoCWgPQwgWaHdIsetwQJSGlFKUaBVLsGgWR0CjuMQzk6tDdX2UKGgGaAloD0MIfQT+8LM9cECUhpRSlGgVS71oFkdAo7j+yRjjJnV9lChoBmgJaA9DCEMfLGMDUHBAlIaUUpRoFUvUaBZHQKO5Ct+TeO51fZQoaAZoCWgPQwgexqS/F3NwQJSGlFKUaBVLyWgWR0CjuQuxrzoVdX2UKGgGaAloD0MIT8qkhrYfcECUhpRSlGgVS9FoFkdAo7l3MEA5rHV9lChoBmgJaA9DCG1VEtmHpnJAlIaUUpRoFUvQaBZHQKO5jx4IKMN1fZQoaAZoCWgPQwgNN+Dzw/5RQJSGlFKUaBVLcGgWR0CjuZSaNMoMdX2UKGgGaAloD0MIgNWRI93hcECUhpRSlGgVS8VoFkdAo7m21lXii3V9lChoBmgJaA9DCOl/uRYthXNAlIaUUpRoFUvBaBZHQKO58+hXbM51fZQoaAZoCWgPQwg9npYfeKRzQJSGlFKUaBVL1WgWR0CjvPyqEOAidX2UKGgGaAloD0MIjdE6qhobckCUhpRSlGgVS+toFkdAo71J2B8QZnV9lChoBmgJaA9DCJQVw9WB4G9AlIaUUpRoFUvWaBZHQKO9l+lTFVF1fZQoaAZoCWgPQwjjqUca3E1yQJSGlFKUaBVLqWgWR0CjvaujZcs2dX2UKGgGaAloD0MIamtEMI5zcUCUhpRSlGgVS9JoFkdAo72shHLA6HV9lChoBmgJaA9DCA2nzM03VXBAlIaUUpRoFUveaBZHQKO9u4Cp3ot1fZQoaAZoCWgPQwg0SSwpN8JxQJSGlFKUaBVL62gWR0Cjvdx8twrEdX2UKGgGaAloD0MIaK8+HvoWckCUhpRSlGgVS+BoFkdAo73+HaewtHV9lChoBmgJaA9DCIEGmzoPF29AlIaUUpRoFUvTaBZHQKO+FjIaLn91fZQoaAZoCWgPQwgU0a+tnwVxQJSGlFKUaBVL42gWR0Cjvk189fTkdX2UKGgGaAloD0MIrtNIS6UtckCUhpRSlGgVS8toFkdAo76YQnQY13V9lChoBmgJaA9DCPvqqkDt33NAlIaUUpRoFUvTaBZHQKO+qVdHDrJ1fZQoaAZoCWgPQwgkQ46tJ9pyQJSGlFKUaBVLtWgWR0Cjvsl0gbIcdX2UKGgGaAloD0MIn47HDJTJcECUhpRSlGgVS+ZoFkdAo77LBCUornV9lChoBmgJaA9DCP9eCg/a43FAlIaUUpRoFUvOaBZHQKO/TpfQa751fZQoaAZoCWgPQwjh0jHn2b1xQJSGlFKUaBVLq2gWR0Cjv492HLzPdX2UKGgGaAloD0MIjzNN2D4TckCUhpRSlGgVTRcBaBZHQKO/pD2rXDp1fZQoaAZoCWgPQwiPNo5YCy1yQJSGlFKUaBVLzmgWR0Cjv+yZrpJPdX2UKGgGaAloD0MIgzC3ezlvcUCUhpRSlGgVS9hoFkdAo8AqFZgXuXV9lChoBmgJaA9DCLDIrx8iB3NAlIaUUpRoFUu5aBZHQKPAMFdszl91fZQoaAZoCWgPQwh7vfvjPXBwQJSGlFKUaBVL1GgWR0CjwEQdCE6DdX2UKGgGaAloD0MIhbAaS1jHcUCUhpRSlGgVS81oFkdAo8BS+Yc/+3V9lChoBmgJaA9DCBSvsrYpa3FAlIaUUpRoFU0EAWgWR0CjwJ1f/m1ZdX2UKGgGaAloD0MIUHEceHV5cECUhpRSlGgVS81oFkdAo8Ck0k4WDnV9lChoBmgJaA9DCJlFKLZCMHNAlIaUUpRoFUu1aBZHQKPA390A93d1fZQoaAZoCWgPQwj3AN2X83xyQJSGlFKUaBVL02gWR0CjwQ9L6DXfdX2UKGgGaAloD0MIIHu9++NacUCUhpRSlGgVS81oFkdAo8EQQJ5VwXV9lChoBmgJaA9DCN2U8lqJ3m5AlIaUUpRoFUvMaBZHQKPBMWi1y/91fZQoaAZoCWgPQwiduByvQFBBQJSGlFKUaBVN6ANoFkdAo8FN2Pkq+nV9lChoBmgJaA9DCIkmUMQipnFAlIaUUpRoFUu0aBZHQKPBmkep4r11fZQoaAZoCWgPQwi/fogNlt9xQJSGlFKUaBVL6mgWR0CjweK0lZ5idX2UKGgGaAloD0MIBVCMLBm+cUCUhpRSlGgVS7RoFkdAo8IP8yeqaXV9lChoBmgJaA9DCL2qs1rgYnJAlIaUUpRoFUvgaBZHQKPCRezlcQl1fZQoaAZoCWgPQwjbMXVX9t1xQJSGlFKUaBVLz2gWR0Cjwmo/7iyZdX2UKGgGaAloD0MIfZdSl8ylc0CUhpRSlGgVTQcBaBZHQKPCaZWq95B1fZQoaAZoCWgPQwiN7iB2JpBwQJSGlFKUaBVL3GgWR0CjwnyjpLVXdX2UKGgGaAloD0MIJc0f09qWckCUhpRSlGgVS9NoFkdAo8Kxiw0O3HV9lChoBmgJaA9DCKDgYkXNRHJAlIaUUpRoFUu5aBZHQKPCx3wkPc11fZQoaAZoCWgPQwip2QOtAPRyQJSGlFKUaBVL1GgWR0Cjwu1Li++NdX2UKGgGaAloD0MIt0QuOEOQcUCUhpRSlGgVS8toFkdAo8Mus3hn8XV9lChoBmgJaA9DCP8iaMzkbHJAlIaUUpRoFU0HAWgWR0Cjwz4raufVdX2UKGgGaAloD0MI+PnvwWtZb0CUhpRSlGgVS8FoFkdAo8NrL4etCHV9lChoBmgJaA9DCD7t8NckBHJAlIaUUpRoFUvyaBZHQKPDfAYYR/V1fZQoaAZoCWgPQwgnEkw1c85yQJSGlFKUaBVNFAFoFkdAo8O3YBeXzHV9lChoBmgJaA9DCBjNyvYhlm9AlIaUUpRoFUvGaBZHQKPDzHo5ggJ1fZQoaAZoCWgPQwh1sP7PobFwQJSGlFKUaBVLtmgWR0Cjw9L6UJOWdX2UKGgGaAloD0MI/pyC/GyETkCUhpRSlGgVS5loFkdAo8PqosI3SHV9lChoBmgJaA9DCDF+GvemxXNAlIaUUpRoFU15AmgWR0CjxAMtbs4UdX2UKGgGaAloD0MIur963LdQc0CUhpRSlGgVS8BoFkdAo8QezfJmunV9lChoBmgJaA9DCEJBKVo5dXFAlIaUUpRoFUvTaBZHQKPEeKNyYHB1fZQoaAZoCWgPQwjaOGItvrBvQJSGlFKUaBVL6mgWR0CjxKVc2R7rdX2UKGgGaAloD0MIEtkHWRYZbkCUhpRSlGgVS85oFkdAo8Ss8ifQKXV9lChoBmgJaA9DCO5dg740G3BAlIaUUpRoFUuvaBZHQKPE2Zk078x1fZQoaAZoCWgPQwjHgOz1bk1vQJSGlFKUaBVLyWgWR0CjxSsqaw2VdX2UKGgGaAloD0MILjcY6nAic0CUhpRSlGgVS+poFkdAo8UznNgSe3V9lChoBmgJaA9DCMfUXdmFk3JAlIaUUpRoFUvHaBZHQKPFUK2KEWZ1fZQoaAZoCWgPQwjRXKeR1hZxQJSGlFKUaBVLzGgWR0CjxWpZOi35dX2UKGgGaAloD0MI1eqrq8KlckCUhpRSlGgVS7VoFkdAo8WcTDfm93V9lChoBmgJaA9DCJpbIawGxnFAlIaUUpRoFUvEaBZHQKPFqd4mkWR1fZQoaAZoCWgPQwjZCMTrevlxQJSGlFKUaBVL0WgWR0CjxatGViWndX2UKGgGaAloD0MIm8dhML8AdECUhpRSlGgVTTEBaBZHQKPFtW9US7J1fZQoaAZoCWgPQwimfAiqRiRzQJSGlFKUaBVL1GgWR0CjxcR82JizdX2UKGgGaAloD0MID0dX6e7ub0CUhpRSlGgVS8xoFkdAo8XiAWi1zHV9lChoBmgJaA9DCIih1clZ/3JAlIaUUpRoFUvaaBZHQKPGGRxtHhF1fZQoaAZoCWgPQwhR3sfRnMBuQJSGlFKUaBVLxGgWR0CjxkaErXlKdX2UKGgGaAloD0MI3+F2aBgPc0CUhpRSlGgVS9JoFkdAo8aG2VmjCnV9lChoBmgJaA9DCBWNtb/z93JAlIaUUpRoFUvbaBZHQKPGpcSoOx11fZQoaAZoCWgPQwjUKY9uRIJwQJSGlFKUaBVLyGgWR0CjxqTVc2R8dX2UKGgGaAloD0MIzGJi8/GLcECUhpRSlGgVS85oFkdAo8b7ksBhhHV9lChoBmgJaA9DCOKrHcW5OHFAlIaUUpRoFUvPaBZHQKPHKQRPGhp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.225-1-MANJARO-x86_64-with-glibc2.36 #1 SMP PREEMPT Sat Nov 26 00:40:25 UTC 2022", "Python": "3.9.0", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu117", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f695c6f5160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f695c6f51f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f695c6f5280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f695c6f5310>", "_build": "<function ActorCriticPolicy._build at 0x7f695c6f53a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f695c6f5430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f695c6f54c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f695c6f5550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f695c6f55e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f695c6f5670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f695c6f5700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f695c6f3a80>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 10010624, "_total_timesteps": 10000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671023773861668087, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGASKz5nPog/KL3PPimvE7+/YqU+V7+8PgAAAAAAAAAAmuKQPSxkrz/Hipo+8ze1viIBJj7jgIY+AAAAAAAAAABNlaM9qWq2P9p2uD7ncGS+O6s7Pp5mmj4AAAAAAAAAADOX+zt7TIe6qIoYtMdpB69ABCM7QR6vMwAAgD8AAIA/mj+fPMPZPboiQ9q69rgxtvuqPDsGbv45AAAAAAAAgD9mQli8e9qMupxqtznt6O64SUiFugCcubgAAIA/AACAP2aWt7ysIvA8PHumvN17rr5ogBG+y6WavQAAAAAAAAAAzQh4PPZsXbpOfUq5M6Y5tFUONDpFuG04AACAPwAAgD/TZEW+BY3/PoJnLD4Mxy2/niPovoqMLj4AAAAAAAAAALMYSD2hYra8+tFovi+9wL3fsUC7dd1SPgAAgD8AAIA/mknuPMPoW7xlw/a89+UEPV9NTj2j8QA7AACAPwAAgD+gPY4+u009PzKMdL7wvFK/nF3iPtxtmr4AAAAAAAAAAE11Zz2vfBc+2lunvkov474zOge7vmt4vgAAAAAAAAAAzdUOPWxTv7vD8bC7wlSxPHyuCj0qvJS9AACAPwAAgD+tkyk+Xq0BP2ALcL0+qD+/zsHRPrNFKL4AAAAAAAAAAO2OMD5fDRs/hlh/PBu3OL+Kkts+J78IvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0010623999999999079, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInE6y1eVGcUCUhpRSlIwBbJRLrYwBdJRHQLJrZsvIwM91fZQoaAZoCWgPQwjcErngzNlxQJSGlFKUaBVLo2gWR0Cya34R28qXdX2UKGgGaAloD0MIStQLPg3zckCUhpRSlGgVS69oFkdAsmt/uRcNY3V9lChoBmgJaA9DCHYyOEpeenJAlIaUUpRoFUuwaBZHQLJrgAAhje91fZQoaAZoCWgPQwgIjsu4qU1yQJSGlFKUaBVLymgWR0Cya5N7ngYQdX2UKGgGaAloD0MIfcucLkttc0CUhpRSlGgVS8hoFkdAsmuhtGd7OXV9lChoBmgJaA9DCPDd5o0TDXNAlIaUUpRoFUvGaBZHQLJrsFx4ptt1fZQoaAZoCWgPQwiNCpxsw9VyQJSGlFKUaBVLyGgWR0Cya7IHkcS5dX2UKGgGaAloD0MICOdTx+qhcECUhpRSlGgVS6poFkdAsmu1bgTAWXV9lChoBmgJaA9DCEMglzjy23NAlIaUUpRoFUvGaBZHQLJruCWeHzp1fZQoaAZoCWgPQwj7O9ujt95yQJSGlFKUaBVLtGgWR0Cya8tPgvUSdX2UKGgGaAloD0MIYRvxZPezckCUhpRSlGgVS4hoFkdAsmveEf1YhnV9lChoBmgJaA9DCP/PYb68XnNAlIaUUpRoFUuxaBZHQLJumhyKekJ1fZQoaAZoCWgPQwjsNNJS+Q9zQJSGlFKUaBVLr2gWR0Cybpyml67edX2UKGgGaAloD0MIZwsIrcduc0CUhpRSlGgVS7BoFkdAsm6hMBZIQXV9lChoBmgJaA9DCGk50ENtcXJAlIaUUpRoFUvGaBZHQLJur9deIEd1fZQoaAZoCWgPQwgaa39nu3RxQJSGlFKUaBVLpWgWR0CybrlKsdT6dX2UKGgGaAloD0MIXwzlRDtxcECUhpRSlGgVS7VoFkdAsm7I078vVXV9lChoBmgJaA9DCF8KD5qd6nFAlIaUUpRoFUvzaBZHQLJu0sANoal1fZQoaAZoCWgPQwgQIhly7I9xQJSGlFKUaBVLx2gWR0CybtYsVclgdX2UKGgGaAloD0MIqoHmcy7ecECUhpRSlGgVS6NoFkdAsm7uNxVAA3V9lChoBmgJaA9DCNfc0f8yRHJAlIaUUpRoFUvOaBZHQLJu8ZOSGJx1fZQoaAZoCWgPQwh2OLpK9wFyQJSGlFKUaBVLrWgWR0CybvM3yZrpdX2UKGgGaAloD0MIkWEVbyQic0CUhpRSlGgVS7loFkdAsm79hkRSP3V9lChoBmgJaA9DCI/Ey9P5JXRAlIaUUpRoFUvQaBZHQLJvA/82rGR1fZQoaAZoCWgPQwhNamgDMNxzQJSGlFKUaBVLzGgWR0CybxIG6f8NdX2UKGgGaAloD0MIUmNCzOXPckCUhpRSlGgVS8RoFkdAsm8fldTo+3V9lChoBmgJaA9DCCbfbHMjm3JAlIaUUpRoFUu1aBZHQLJvJPomoit1fZQoaAZoCWgPQwjvx+2XDzNzQJSGlFKUaBVLo2gWR0Cybyba7EpBdX2UKGgGaAloD0MIhleSPNfXOECUhpRSlGgVS2poFkdAsm8r5mAbynV9lChoBmgJaA9DCFQaMbMPHXJAlIaUUpRoFUujaBZHQLJvLq+8Gs51fZQoaAZoCWgPQwg0gSIWMRxxQJSGlFKUaBVLu2gWR0CybzzvqkdndX2UKGgGaAloD0MIFJUNa6ofcUCUhpRSlGgVS6VoFkdAsm9ETzundnV9lChoBmgJaA9DCJUrvMuFTnRAlIaUUpRoFUvIaBZHQLJvWgZjx1B1fZQoaAZoCWgPQwi1UZ0OpCNxQJSGlFKUaBVLrGgWR0Cyb1oI8hcJdX2UKGgGaAloD0MI2J3uPPGZcECUhpRSlGgVS6toFkdAsm9plQMx5HV9lChoBmgJaA9DCGVR2EURqHBAlIaUUpRoFUu2aBZHQLJvkULDye91fZQoaAZoCWgPQwiuDoC4awhzQJSGlFKUaBVLwmgWR0Cyb5bowEhadX2UKGgGaAloD0MIwCFUqdmXckCUhpRSlGgVS7hoFkdAsm+exA0KqnV9lChoBmgJaA9DCA9EFmmiGHNAlIaUUpRoFUu2aBZHQLJvpWbgCOp1fZQoaAZoCWgPQwgcQSrFTqJyQJSGlFKUaBVLo2gWR0Cyb7Luc+aCdX2UKGgGaAloD0MI2C5tOOwJcUCUhpRSlGgVS6BoFkdAsm/CWnjyWnV9lChoBmgJaA9DCIS9iSF5T3FAlIaUUpRoFUutaBZHQLJvyBcRlH11fZQoaAZoCWgPQwhkA+liUy1yQJSGlFKUaBVLqmgWR0Cyb82VzIV/dX2UKGgGaAloD0MISWjLuVQ9dECUhpRSlGgVS9BoFkdAsm/XGPxQSHV9lChoBmgJaA9DCKbTug0qlHRAlIaUUpRoFUvJaBZHQLJv42Qnx8V1fZQoaAZoCWgPQwj5LM+DO2xzQJSGlFKUaBVLxWgWR0Cyb/2o3rD7dX2UKGgGaAloD0MIxEFClC/dc0CUhpRSlGgVS7xoFkdAsm//VLBbfXV9lChoBmgJaA9DCKTFGcOcHXJAlIaUUpRoFUuqaBZHQLJwA9XtBv91fZQoaAZoCWgPQwi78e7IWJxzQJSGlFKUaBVLv2gWR0CycCFlXiiqdX2UKGgGaAloD0MIFqQZi+aVckCUhpRSlGgVS7FoFkdAsnAkHGCI13V9lChoBmgJaA9DCCklBKuquHFAlIaUUpRoFUuvaBZHQLJwU9Q40dl1fZQoaAZoCWgPQwguAmN9w5xzQJSGlFKUaBVLt2gWR0CycFc1Gb1AdX2UKGgGaAloD0MIajANw8chc0CUhpRSlGgVS7doFkdAsnBkbS7XhHV9lChoBmgJaA9DCJbNHJKapHFAlIaUUpRoFUuzaBZHQLJwZpFkQPJ1fZQoaAZoCWgPQwg+tI8VfBRwQJSGlFKUaBVLmWgWR0CycG14keIVdX2UKGgGaAloD0MIlfCEXn9USUCUhpRSlGgVS3loFkdAsnB/1schknV9lChoBmgJaA9DCCGRtvFne3BAlIaUUpRoFUuyaBZHQLJwifGdZq51fZQoaAZoCWgPQwgz+tFwiqlzQJSGlFKUaBVLwGgWR0CycIzfaYeDdX2UKGgGaAloD0MIfPFFe3zKc0CUhpRSlGgVS9doFkdAsnCXPRiPQ3V9lChoBmgJaA9DCGnFNxQ+23FAlIaUUpRoFUuSaBZHQLJwmcmBvrJ1fZQoaAZoCWgPQwgUyy2txkdyQJSGlFKUaBVLs2gWR0CycJ7blA/tdX2UKGgGaAloD0MIa4DSUKMLckCUhpRSlGgVS8toFkdAsnCpBSk0rXV9lChoBmgJaA9DCBjshm3LVHFAlIaUUpRoFUuWaBZHQLJwtSWJJoV1fZQoaAZoCWgPQwj8471q5YFyQJSGlFKUaBVLvGgWR0CycMjsQd0adX2UKGgGaAloD0MIIO9VKxOFckCUhpRSlGgVS7loFkdAsnDZesxO+XV9lChoBmgJaA9DCKdaC7PQskVAlIaUUpRoFUtkaBZHQLJw7YBNmDl1fZQoaAZoCWgPQwikVS3p6DxwQJSGlFKUaBVLn2gWR0CycPAnUlRhdX2UKGgGaAloD0MIX7cIjHVPcECUhpRSlGgVS6poFkdAsnD5+y7f53V9lChoBmgJaA9DCMRCrWleR3FAlIaUUpRoFUufaBZHQLJw/o60Y0l1fZQoaAZoCWgPQwgVOxqHuhhwQJSGlFKUaBVLsmgWR0CycRDZL7GedX2UKGgGaAloD0MI+wPltr05ckCUhpRSlGgVS6doFkdAsnEjQswta3V9lChoBmgJaA9DCGVyamcYOnJAlIaUUpRoFUuraBZHQLJxNIP9UCJ1fZQoaAZoCWgPQwjPh2cJcl5yQJSGlFKUaBVLm2gWR0CycTlq8DjjdX2UKGgGaAloD0MITODW3Xzrc0CUhpRSlGgVS+JoFkdAsnFNWS2Yv3V9lChoBmgJaA9DCKmgoupXzm9AlIaUUpRoFUu8aBZHQLJxUcPe54J1fZQoaAZoCWgPQwiTOgFNRLlyQJSGlFKUaBVLqWgWR0CycV4A80UHdX2UKGgGaAloD0MIrI2xEx73ckCUhpRSlGgVS8RoFkdAsnFtIGyHEnV9lChoBmgJaA9DCN9OIsK/m3JAlIaUUpRoFUvaaBZHQLJxcjkuHvd1fZQoaAZoCWgPQwjlYaHWdBdyQJSGlFKUaBVLlmgWR0CycYU3bVSXdX2UKGgGaAloD0MIj6hQ3VyYckCUhpRSlGgVS5hoFkdAsnGRyq+8G3V9lChoBmgJaA9DCCRIpdhRn3BAlIaUUpRoFUu6aBZHQLJxk3dKujh1fZQoaAZoCWgPQwhEqFKzx/FzQJSGlFKUaBVL0GgWR0CycZV2q1gIdX2UKGgGaAloD0MIq7GEtTHPcUCUhpRSlGgVS71oFkdAsnG8mLLpzXV9lChoBmgJaA9DCB6oUx7da3NAlIaUUpRoFUuqaBZHQLJxvwOe8PF1fZQoaAZoCWgPQwjRrkLKjwdzQJSGlFKUaBVL0mgWR0CyccU3wTdtdX2UKGgGaAloD0MICKpGr4bicECUhpRSlGgVS71oFkdAsnHkicG1QnV9lChoBmgJaA9DCGN+bmgK2HJAlIaUUpRoFUu0aBZHQLJx7gQHzH11fZQoaAZoCWgPQwi3mJ8bGit0QJSGlFKUaBVLtWgWR0CycfO8TSLJdX2UKGgGaAloD0MIe/mdJjMoR0CUhpRSlGgVS2RoFkdAsnH/L+xW1nV9lChoBmgJaA9DCJ5i1SDMfnFAlIaUUpRoFUvCaBZHQLJyEw1BMSN1fZQoaAZoCWgPQwglIZG2cZhwQJSGlFKUaBVLqmgWR0CychpyQxN7dX2UKGgGaAloD0MI2su201Zjc0CUhpRSlGgVS7NoFkdAsnIsAZKnN3V9lChoBmgJaA9DCNSBrKeWVXRAlIaUUpRoFUvWaBZHQLJyLgmqo611fZQoaAZoCWgPQwjMQGX8u8BxQJSGlFKUaBVLsGgWR0Cycj5d0JWvdX2UKGgGaAloD0MIq3e4HVrxc0CUhpRSlGgVS+NoFkdAsnJKCEpRXXV9lChoBmgJaA9DCNemsb0WvnJAlIaUUpRoFUuwaBZHQLJyTK2a2F51fZQoaAZoCWgPQwi7ZBwjGSpzQJSGlFKUaBVLzGgWR0CycmcgZCOWdX2UKGgGaAloD0MI2SJpN3o1ckCUhpRSlGgVS6hoFkdAsnJtBJI1+HV9lChoBmgJaA9DCEolPKEXnnNAlIaUUpRoFUuraBZHQLJybvA44qB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2444, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.225-1-MANJARO-x86_64-with-glibc2.36 #1 SMP PREEMPT Sat Nov 26 00:40:25 UTC 2022", "Python": "3.9.0", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu117", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 289.1094092671732, "std_reward": 21.647048760174634, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-14T16:41:29.406081"}
|