5M_iterations_128_batch
Browse files- LunarLander5M_128.zip +3 -0
- LunarLander5M_128/_stable_baselines3_version +1 -0
- LunarLander5M_128/data +94 -0
- LunarLander5M_128/policy.optimizer.pth +3 -0
- LunarLander5M_128/policy.pth +3 -0
- LunarLander5M_128/pytorch_variables.pth +3 -0
- LunarLander5M_128/system_info.txt +7 -0
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
LunarLander5M_128.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a890bbe13753c0b6f63dcae5d8a69c9730c762d7a9599961aa615e1806f5dfa1
|
3 |
+
size 146736
|
LunarLander5M_128/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
LunarLander5M_128/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f695c6f5160>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f695c6f51f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f695c6f5280>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f695c6f5310>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f695c6f53a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f695c6f5430>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f695c6f54c0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f695c6f5550>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f695c6f55e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f695c6f5670>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f695c6f5700>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f695c6f3a80>"
|
20 |
+
},
|
21 |
+
"verbose": 0,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 5013504,
|
46 |
+
"_total_timesteps": 5000000.0,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671019615971768691,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMBqW76Xwlg+TljCPnHDjb6Z/eA80iTSPQAAAAAAAAAAAJTgvE4ZxLyXHIg9o2jJu8jNK76+Rwy+AACAPwAAgD8AzLa7++fVPafFjb0O4r6+cm9DvW3UVjwAAAAAAAAAAICnkD2405Q/8gWePjQ4Lb93M+09MBkvPgAAAAAAAAAAmowPvUjDkLoOFYo3z7d2Mh+oCLrxvJ+2AACAPwAAgD9mHz69w0lPunSFPrpvK9001oiyOs3YXDkAAIA/AACAP5o6wT2zGSI/FaQnu6x9Cr+zdbE9Q4PUvQAAAAAAAAAAM7vru34XiT79Xds87CvYvovUfby8mSC9AAAAAAAAAABmroY8j2Z8uh5ORzUfCXYwVCbDOh4cUrQAAIA/AACAPxrzST0fLdm5LoLKNndLGrA3OdC7wtHttQAAgD8AAIA/4HJHvuGUrbyJEkG9oTawuza8FT7bnYo8AACAPwAAgD8zW9I7Xne0P5l0Jj8xFzu9DYfzu4/RFr4AAAAAAAAAAABw/ryBdbe8e33zPc+WCr3bTjO+E3LYvQAAgD8AAIA/c4ajPWcJHz/tsIG9rLcBvxxoZj0CFQe+AAAAAAAAAAAAcC49bK22u1sYQjzSgJU8vloqvbumfz0AAIA/AACAP5qYHL5C2Ac/e3dDvQcxE7/E0la+QyzhPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVKRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwr6dRITpcUCUhpRSlIwBbJRNBAGMAXSUR0CjtebjLjgidX2UKGgGaAloD0MImUuqtluucUCUhpRSlGgVS7toFkdAo7YA2/BWP3V9lChoBmgJaA9DCAAbECEutGVAlIaUUpRoFU3oA2gWR0CjtkG9YfW+dX2UKGgGaAloD0MIL058tWP+ckCUhpRSlGgVS91oFkdAo7ZG+yquKXV9lChoBmgJaA9DCKm+84sSbnFAlIaUUpRoFUvEaBZHQKO2hKV6eGx1fZQoaAZoCWgPQwgNOEvJ8sBxQJSGlFKUaBVLtGgWR0Cjtr9aUzKtdX2UKGgGaAloD0MI7PtwkJDybkCUhpRSlGgVS9FoFkdAo7bcORT0hHV9lChoBmgJaA9DCOlDF9S37XFAlIaUUpRoFUvdaBZHQKO285nUUfx1fZQoaAZoCWgPQwhrf2d7dExvQJSGlFKUaBVLvGgWR0CjtvYmLLpzdX2UKGgGaAloD0MIMepaex9OcECUhpRSlGgVS7ZoFkdAo7cJ/b0voXV9lChoBmgJaA9DCGeAC7JlnXBAlIaUUpRoFUu0aBZHQKO3SdQwbl11fZQoaAZoCWgPQwgd6KG2jTZwQJSGlFKUaBVNKwFoFkdAo7ddSQ5my3V9lChoBmgJaA9DCA6hSs3e9HJAlIaUUpRoFU0RAWgWR0Cjt6b+98JEdX2UKGgGaAloD0MITpfFxOavcECUhpRSlGgVS9JoFkdAo7fyOcUdrHV9lChoBmgJaA9DCHgJTn0gUXFAlIaUUpRoFUvtaBZHQKO39+z+m3x1fZQoaAZoCWgPQwhL5ljeldtxQJSGlFKUaBVL1WgWR0CjuASKNyYHdX2UKGgGaAloD0MI3PEmv8XIcUCUhpRSlGgVS9RoFkdAo7hlWGRFJHV9lChoBmgJaA9DCLZoAdoWnHFAlIaUUpRoFUvEaBZHQKO4hEmY0EZ1fZQoaAZoCWgPQwj1TC8x1sNyQJSGlFKUaBVL3WgWR0CjuIjp9qk/dX2UKGgGaAloD0MIFRqIZfMvckCUhpRSlGgVS/poFkdAo7iK+BYms3V9lChoBmgJaA9DCCNKe4OvynFAlIaUUpRoFUu1aBZHQKO4nVMEidJ1fZQoaAZoCWgPQwgWaHdIsetwQJSGlFKUaBVLsGgWR0CjuMQzk6tDdX2UKGgGaAloD0MIfQT+8LM9cECUhpRSlGgVS71oFkdAo7j+yRjjJnV9lChoBmgJaA9DCEMfLGMDUHBAlIaUUpRoFUvUaBZHQKO5Ct+TeO51fZQoaAZoCWgPQwgexqS/F3NwQJSGlFKUaBVLyWgWR0CjuQuxrzoVdX2UKGgGaAloD0MIT8qkhrYfcECUhpRSlGgVS9FoFkdAo7l3MEA5rHV9lChoBmgJaA9DCG1VEtmHpnJAlIaUUpRoFUvQaBZHQKO5jx4IKMN1fZQoaAZoCWgPQwgNN+Dzw/5RQJSGlFKUaBVLcGgWR0CjuZSaNMoMdX2UKGgGaAloD0MIgNWRI93hcECUhpRSlGgVS8VoFkdAo7m21lXii3V9lChoBmgJaA9DCOl/uRYthXNAlIaUUpRoFUvBaBZHQKO58+hXbM51fZQoaAZoCWgPQwg9npYfeKRzQJSGlFKUaBVL1WgWR0CjvPyqEOAidX2UKGgGaAloD0MIjdE6qhobckCUhpRSlGgVS+toFkdAo71J2B8QZnV9lChoBmgJaA9DCJQVw9WB4G9AlIaUUpRoFUvWaBZHQKO9l+lTFVF1fZQoaAZoCWgPQwjjqUca3E1yQJSGlFKUaBVLqWgWR0CjvaujZcs2dX2UKGgGaAloD0MIamtEMI5zcUCUhpRSlGgVS9JoFkdAo72shHLA6HV9lChoBmgJaA9DCA2nzM03VXBAlIaUUpRoFUveaBZHQKO9u4Cp3ot1fZQoaAZoCWgPQwg0SSwpN8JxQJSGlFKUaBVL62gWR0Cjvdx8twrEdX2UKGgGaAloD0MIaK8+HvoWckCUhpRSlGgVS+BoFkdAo73+HaewtHV9lChoBmgJaA9DCIEGmzoPF29AlIaUUpRoFUvTaBZHQKO+FjIaLn91fZQoaAZoCWgPQwgU0a+tnwVxQJSGlFKUaBVL42gWR0Cjvk189fTkdX2UKGgGaAloD0MIrtNIS6UtckCUhpRSlGgVS8toFkdAo76YQnQY13V9lChoBmgJaA9DCPvqqkDt33NAlIaUUpRoFUvTaBZHQKO+qVdHDrJ1fZQoaAZoCWgPQwgkQ46tJ9pyQJSGlFKUaBVLtWgWR0Cjvsl0gbIcdX2UKGgGaAloD0MIn47HDJTJcECUhpRSlGgVS+ZoFkdAo77LBCUornV9lChoBmgJaA9DCP9eCg/a43FAlIaUUpRoFUvOaBZHQKO/TpfQa751fZQoaAZoCWgPQwjh0jHn2b1xQJSGlFKUaBVLq2gWR0Cjv492HLzPdX2UKGgGaAloD0MIjzNN2D4TckCUhpRSlGgVTRcBaBZHQKO/pD2rXDp1fZQoaAZoCWgPQwiPNo5YCy1yQJSGlFKUaBVLzmgWR0Cjv+yZrpJPdX2UKGgGaAloD0MIgzC3ezlvcUCUhpRSlGgVS9hoFkdAo8AqFZgXuXV9lChoBmgJaA9DCLDIrx8iB3NAlIaUUpRoFUu5aBZHQKPAMFdszl91fZQoaAZoCWgPQwh7vfvjPXBwQJSGlFKUaBVL1GgWR0CjwEQdCE6DdX2UKGgGaAloD0MIhbAaS1jHcUCUhpRSlGgVS81oFkdAo8BS+Yc/+3V9lChoBmgJaA9DCBSvsrYpa3FAlIaUUpRoFU0EAWgWR0CjwJ1f/m1ZdX2UKGgGaAloD0MIUHEceHV5cECUhpRSlGgVS81oFkdAo8Ck0k4WDnV9lChoBmgJaA9DCJlFKLZCMHNAlIaUUpRoFUu1aBZHQKPA390A93d1fZQoaAZoCWgPQwj3AN2X83xyQJSGlFKUaBVL02gWR0CjwQ9L6DXfdX2UKGgGaAloD0MIIHu9++NacUCUhpRSlGgVS81oFkdAo8EQQJ5VwXV9lChoBmgJaA9DCN2U8lqJ3m5AlIaUUpRoFUvMaBZHQKPBMWi1y/91fZQoaAZoCWgPQwiduByvQFBBQJSGlFKUaBVN6ANoFkdAo8FN2Pkq+nV9lChoBmgJaA9DCIkmUMQipnFAlIaUUpRoFUu0aBZHQKPBmkep4r11fZQoaAZoCWgPQwi/fogNlt9xQJSGlFKUaBVL6mgWR0CjweK0lZ5idX2UKGgGaAloD0MIBVCMLBm+cUCUhpRSlGgVS7RoFkdAo8IP8yeqaXV9lChoBmgJaA9DCL2qs1rgYnJAlIaUUpRoFUvgaBZHQKPCRezlcQl1fZQoaAZoCWgPQwjbMXVX9t1xQJSGlFKUaBVLz2gWR0Cjwmo/7iyZdX2UKGgGaAloD0MIfZdSl8ylc0CUhpRSlGgVTQcBaBZHQKPCaZWq95B1fZQoaAZoCWgPQwiN7iB2JpBwQJSGlFKUaBVL3GgWR0CjwnyjpLVXdX2UKGgGaAloD0MIJc0f09qWckCUhpRSlGgVS9NoFkdAo8Kxiw0O3HV9lChoBmgJaA9DCKDgYkXNRHJAlIaUUpRoFUu5aBZHQKPCx3wkPc11fZQoaAZoCWgPQwip2QOtAPRyQJSGlFKUaBVL1GgWR0Cjwu1Li++NdX2UKGgGaAloD0MIt0QuOEOQcUCUhpRSlGgVS8toFkdAo8Mus3hn8XV9lChoBmgJaA9DCP8iaMzkbHJAlIaUUpRoFU0HAWgWR0Cjwz4raufVdX2UKGgGaAloD0MI+PnvwWtZb0CUhpRSlGgVS8FoFkdAo8NrL4etCHV9lChoBmgJaA9DCD7t8NckBHJAlIaUUpRoFUvyaBZHQKPDfAYYR/V1fZQoaAZoCWgPQwgnEkw1c85yQJSGlFKUaBVNFAFoFkdAo8O3YBeXzHV9lChoBmgJaA9DCBjNyvYhlm9AlIaUUpRoFUvGaBZHQKPDzHo5ggJ1fZQoaAZoCWgPQwh1sP7PobFwQJSGlFKUaBVLtmgWR0Cjw9L6UJOWdX2UKGgGaAloD0MI/pyC/GyETkCUhpRSlGgVS5loFkdAo8PqosI3SHV9lChoBmgJaA9DCDF+GvemxXNAlIaUUpRoFU15AmgWR0CjxAMtbs4UdX2UKGgGaAloD0MIur963LdQc0CUhpRSlGgVS8BoFkdAo8QezfJmunV9lChoBmgJaA9DCEJBKVo5dXFAlIaUUpRoFUvTaBZHQKPEeKNyYHB1fZQoaAZoCWgPQwjaOGItvrBvQJSGlFKUaBVL6mgWR0CjxKVc2R7rdX2UKGgGaAloD0MIEtkHWRYZbkCUhpRSlGgVS85oFkdAo8Ss8ifQKXV9lChoBmgJaA9DCO5dg740G3BAlIaUUpRoFUuvaBZHQKPE2Zk078x1fZQoaAZoCWgPQwjHgOz1bk1vQJSGlFKUaBVLyWgWR0CjxSsqaw2VdX2UKGgGaAloD0MILjcY6nAic0CUhpRSlGgVS+poFkdAo8UznNgSe3V9lChoBmgJaA9DCMfUXdmFk3JAlIaUUpRoFUvHaBZHQKPFUK2KEWZ1fZQoaAZoCWgPQwjRXKeR1hZxQJSGlFKUaBVLzGgWR0CjxWpZOi35dX2UKGgGaAloD0MI1eqrq8KlckCUhpRSlGgVS7VoFkdAo8WcTDfm93V9lChoBmgJaA9DCJpbIawGxnFAlIaUUpRoFUvEaBZHQKPFqd4mkWR1fZQoaAZoCWgPQwjZCMTrevlxQJSGlFKUaBVL0WgWR0CjxatGViWndX2UKGgGaAloD0MIm8dhML8AdECUhpRSlGgVTTEBaBZHQKPFtW9US7J1fZQoaAZoCWgPQwimfAiqRiRzQJSGlFKUaBVL1GgWR0CjxcR82JizdX2UKGgGaAloD0MID0dX6e7ub0CUhpRSlGgVS8xoFkdAo8XiAWi1zHV9lChoBmgJaA9DCIih1clZ/3JAlIaUUpRoFUvaaBZHQKPGGRxtHhF1fZQoaAZoCWgPQwhR3sfRnMBuQJSGlFKUaBVLxGgWR0CjxkaErXlKdX2UKGgGaAloD0MI3+F2aBgPc0CUhpRSlGgVS9JoFkdAo8aG2VmjCnV9lChoBmgJaA9DCBWNtb/z93JAlIaUUpRoFUvbaBZHQKPGpcSoOx11fZQoaAZoCWgPQwjUKY9uRIJwQJSGlFKUaBVLyGgWR0CjxqTVc2R8dX2UKGgGaAloD0MIzGJi8/GLcECUhpRSlGgVS85oFkdAo8b7ksBhhHV9lChoBmgJaA9DCOKrHcW5OHFAlIaUUpRoFUvPaBZHQKPHKQRPGhp1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 1224,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 128,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
LunarLander5M_128/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3eb7ee7e4bae71e46e9b5287e8e989c7b03b2c5e0be978b06b6f7b4d47f1392
|
3 |
+
size 87545
|
LunarLander5M_128/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:368039540531bf5e48398ca29b2695dbfab2c245bdd39fc6ee160387de2e2f08
|
3 |
+
size 43073
|
LunarLander5M_128/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
LunarLander5M_128/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.225-1-MANJARO-x86_64-with-glibc2.36 #1 SMP PREEMPT Sat Nov 26 00:40:25 UTC 2022
|
2 |
+
Python: 3.9.0
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu117
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.23.5
|
7 |
+
Gym: 0.21.0
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 284.32 +/- 15.46
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f695c6f5160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f695c6f51f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f695c6f5280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f695c6f5310>", "_build": "<function ActorCriticPolicy._build at 0x7f695c6f53a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f695c6f5430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f695c6f54c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f695c6f5550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f695c6f55e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f695c6f5670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f695c6f5700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f695c6f3a80>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3014656, "_total_timesteps": 3000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671016809756252456, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEbgcD5uYTg/N+5IPlXABL9Mfck+gFUvvQAAAAAAAAAATQDYPXvGjrrmnZY7fvaltoSpEToBSZu1AAAAAAAAgD8AIJM65/66P8CH4Dy1Osg+HbBAuyjQ77wAAAAAAAAAAFBfiz4GpGA/SnT9vO23Cb/Kv6o+FJkGvgAAAAAAAAAAZsZBPeH4grpmpRA0hIobL/VUlbo4bpWzAACAPwAAgD/NPOi7RJjEPYjPzzuwE42+S5e2vWUKKz0AAAAAAAAAAK2YE76nfWo/E8NivtZ17b4HUGy+LN4VvQAAAAAAAAAAZuhRvbRyDz7bZJM+9sG2vgaKlj1N8wg9AAAAAAAAAABtvQa+bHugPyuGIr/frhu/JUcZvsrLtb4AAAAAAAAAAPo9A75QRok+QsTbPnZwn7595gO9Nj0fPgAAAAAAAAAAAE5uPJ1mdz6KGcu9y3bLvhI3i70cDzK9AAAAAAAAAAAgbSU+onkuP2ROqb3YaAG/ez8lPoLFFb4AAAAAAAAAADMv4LvPSlK8DMudPVOFJL5gAtO7lHSsvAAAgD8AAIA/M9swO/sFgbyeDuC9a5vrvbUopD3oV5s9AACAPwAAgD+abVO9iUWcP7nuiL79nh6/wIStvQ1KEr4AAAAAAAAAAJphYbwplBC6i6twObw+FzXQ2PA6ET+MuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFvpgGRuOQ0CUhpRSlIwBbJRLuIwBdJRHQJhg0ood+5R1fZQoaAZoCWgPQwhxyXGn9PpmQJSGlFKUaBVN6ANoFkdAmGEQA6uGK3V9lChoBmgJaA9DCDBHj9/bH3NAlIaUUpRoFUvoaBZHQJhhLkhib2F1fZQoaAZoCWgPQwjl8bT8QItwQJSGlFKUaBVLz2gWR0CYYTvwmVqvdX2UKGgGaAloD0MIFJM3wMzVcECUhpRSlGgVS8BoFkdAmGGLPt2LYXV9lChoBmgJaA9DCEmCcAUUYXJAlIaUUpRoFU0TAWgWR0CYYhbfP5YYdX2UKGgGaAloD0MISRCugIJfcUCUhpRSlGgVS9poFkdAmGIbx3FDOXV9lChoBmgJaA9DCMjT8gNXl29AlIaUUpRoFUvTaBZHQJhiU32mHgx1fZQoaAZoCWgPQwjspL4sbcBxQJSGlFKUaBVLvGgWR0CYYlglWwNcdX2UKGgGaAloD0MImzv6X27pcUCUhpRSlGgVS9hoFkdAmGJfzOHFgnV9lChoBmgJaA9DCGzu6H+5+HNAlIaUUpRoFUvGaBZHQJhifZzxPO91fZQoaAZoCWgPQwiE1VjCWsZxQJSGlFKUaBVL7GgWR0CYYxHJcPe6dX2UKGgGaAloD0MISgosgOlzc0CUhpRSlGgVS+BoFkdAmGMXxz7uUnV9lChoBmgJaA9DCKhUibI3VHBAlIaUUpRoFUvmaBZHQJhjun+AEuB1fZQoaAZoCWgPQwgl6ZrJd+FyQJSGlFKUaBVNAwFoFkdAmGP9BWxQi3V9lChoBmgJaA9DCM41zND4UnBAlIaUUpRoFUviaBZHQJhkrTvy9VZ1fZQoaAZoCWgPQwjTTWIQmLdxQJSGlFKUaBVL3GgWR0CYZK3cHnlodX2UKGgGaAloD0MI0xQBTq/gckCUhpRSlGgVS9RoFkdAmGTcUM5OrXV9lChoBmgJaA9DCNrnMcoz03JAlIaUUpRoFUvTaBZHQJhlONbTtsx1fZQoaAZoCWgPQwhLICV2bdlwQJSGlFKUaBVL9WgWR0CYZVh3JPqLdX2UKGgGaAloD0MIGSDRBMo+cUCUhpRSlGgVS/JoFkdAmGV1mrbQC3V9lChoBmgJaA9DCKPp7GRwDnJAlIaUUpRoFUvEaBZHQJhlhVZLZjB1fZQoaAZoCWgPQwiUbeAO1GNxQJSGlFKUaBVLvmgWR0CYZbNnGsFMdX2UKGgGaAloD0MI83FtqJgGcUCUhpRSlGgVS9JoFkdAmGXEy+HrQnV9lChoBmgJaA9DCEMdVrhlO29AlIaUUpRoFUvRaBZHQJhl8py6tkp1fZQoaAZoCWgPQwh2w7ZFGb1uQJSGlFKUaBVL1WgWR0CYZgNbTtsvdX2UKGgGaAloD0MISFFn7qGrcECUhpRSlGgVS8poFkdAmGaWaQV9GHV9lChoBmgJaA9DCI+LahHR43BAlIaUUpRoFU0IAWgWR0CYbHSiudPMdX2UKGgGaAloD0MIfEj43p9Hc0CUhpRSlGgVS+5oFkdAmGyZoGpuM3V9lChoBmgJaA9DCHXN5Jvt53JAlIaUUpRoFUvHaBZHQJhs2TEBKcx1fZQoaAZoCWgPQwgD0v4HWIRxQJSGlFKUaBVL7WgWR0CYbUfw7T2GdX2UKGgGaAloD0MIGeJYF7fdQkCUhpRSlGgVS6ZoFkdAmG3Mhouf3HV9lChoBmgJaA9DCNAmh0/6pHBAlIaUUpRoFUvBaBZHQJhuAZzgdfd1fZQoaAZoCWgPQwi4PxcNmT1yQJSGlFKUaBVL7GgWR0CYbkElE7W/dX2UKGgGaAloD0MId/UqMjqnbkCUhpRSlGgVS81oFkdAmG5ZfhMrVnV9lChoBmgJaA9DCK+w4H7A03BAlIaUUpRoFUvxaBZHQJhuihM8HOd1fZQoaAZoCWgPQwh8uOS4U95zQJSGlFKUaBVLxmgWR0CYbqa1Cw8odX2UKGgGaAloD0MIz/i+uBQHckCUhpRSlGgVS7toFkdAmG6ujVQQ+XV9lChoBmgJaA9DCLpnXaPlMHJAlIaUUpRoFUvwaBZHQJhvF1+y7f51fZQoaAZoCWgPQwg2k2+2ecJxQJSGlFKUaBVNIwFoFkdAmG9GMfigkHV9lChoBmgJaA9DCErToGheqXFAlIaUUpRoFU0EAWgWR0CYb6ujRD1HdX2UKGgGaAloD0MIsMdESrPEcUCUhpRSlGgVS9VoFkdAmG/OwTufEnV9lChoBmgJaA9DCPfoDfeRo3NAlIaUUpRoFUv/aBZHQJhv6BZpztF1fZQoaAZoCWgPQwjXwiy0c0VzQJSGlFKUaBVLyWgWR0CYcIJIlMRIdX2UKGgGaAloD0MI0zHnGTuScECUhpRSlGgVS+hoFkdAmHDSlN1yNnV9lChoBmgJaA9DCLJMv0T8W3BAlIaUUpRoFUv3aBZHQJhw9i7TUiJ1fZQoaAZoCWgPQwgNcEG2LAJyQJSGlFKUaBVL02gWR0CYcR+OfdyldX2UKGgGaAloD0MIzNJOzWVdcUCUhpRSlGgVS8doFkdAmHFiLZSNwXV9lChoBmgJaA9DCEm70cd8x29AlIaUUpRoFUvZaBZHQJhx4OVgQYl1fZQoaAZoCWgPQwiARX790DhxQJSGlFKUaBVL0mgWR0CYchFoL5RCdX2UKGgGaAloD0MIY7ml1dAlcECUhpRSlGgVS9ZoFkdAmHIPs/pt8HV9lChoBmgJaA9DCBDqIoXy+XNAlIaUUpRoFUvKaBZHQJhyFw5vLox1fZQoaAZoCWgPQwhsy4CzlM1wQJSGlFKUaBVL02gWR0CYctEsasIWdX2UKGgGaAloD0MIX10VqMX3cECUhpRSlGgVS/ZoFkdAmHL/bj94vHV9lChoBmgJaA9DCEJcOXsnv3NAlIaUUpRoFUv0aBZHQJhzATtb9qF1fZQoaAZoCWgPQwil+WNam5VwQJSGlFKUaBVL9WgWR0CYc5ZWq95AdX2UKGgGaAloD0MI61OOyeJTc0CUhpRSlGgVS8NoFkdAmHP0/8l5W3V9lChoBmgJaA9DCMv49xnXzHBAlIaUUpRoFUvzaBZHQJh0InH/9511fZQoaAZoCWgPQwhbI4JxcJpwQJSGlFKUaBVL8GgWR0CYdDPomoitdX2UKGgGaAloD0MI2zLgLGUwcUCUhpRSlGgVTQcBaBZHQJh0YfuCwr11fZQoaAZoCWgPQwi1/SsrjdFyQJSGlFKUaBVL12gWR0CYdMXk5p8GdX2UKGgGaAloD0MIKnPzjei2c0CUhpRSlGgVS9loFkdAmHT4uoP07XV9lChoBmgJaA9DCPuSjQfbf29AlIaUUpRoFUvyaBZHQJh1IxpL26F1fZQoaAZoCWgPQwgNbmsLjxJxQJSGlFKUaBVL1WgWR0CYdTMX7+DOdX2UKGgGaAloD0MIfnN/9ThmcUCUhpRSlGgVS8FoFkdAmHWO58Sf2HV9lChoBmgJaA9DCJqWWBlNeXFAlIaUUpRoFUvWaBZHQJh14eFL39J1fZQoaAZoCWgPQwjS4La28BFwQJSGlFKUaBVL12gWR0CYdeh9srNGdX2UKGgGaAloD0MI1hpK7cXFcECUhpRSlGgVS+hoFkdAmHYKaTfR/nV9lChoBmgJaA9DCI4fKo3YDnFAlIaUUpRoFUvDaBZHQJh2TVnVXmx1fZQoaAZoCWgPQwiemssNBuJuQJSGlFKUaBVL1WgWR0CYdtQgs9SudX2UKGgGaAloD0MI7kCd8ugjb0CUhpRSlGgVS+VoFkdAmHcXhKlHjXV9lChoBmgJaA9DCOOkMO9x8HBAlIaUUpRoFUu7aBZHQJh3Sy3Td+J1fZQoaAZoCWgPQwhxrmGGRh1xQJSGlFKUaBVLwWgWR0CYd4y6+WWydX2UKGgGaAloD0MIh4ibU4kIcUCUhpRSlGgVS/NoFkdAmHfof0VafXV9lChoBmgJaA9DCEvJchLKknJAlIaUUpRoFUvJaBZHQJh36RKYiPh1fZQoaAZoCWgPQwgiGAeXjoRxQJSGlFKUaBVLxWgWR0CYeG9qUNaydX2UKGgGaAloD0MIk+UklL43cECUhpRSlGgVS+NoFkdAmHjJmVZ9u3V9lChoBmgJaA9DCMYYWMdxIXNAlIaUUpRoFU0CAWgWR0CYeM5v99+gdX2UKGgGaAloD0MISL99HfgfcUCUhpRSlGgVS9hoFkdAmHj8t9QXRHV9lChoBmgJaA9DCLxa7swEeXFAlIaUUpRoFUvnaBZHQJh5RAUtZmt1fZQoaAZoCWgPQwii8Nk6eKJxQJSGlFKUaBVLyWgWR0CYeX212JSBdX2UKGgGaAloD0MITFRvDex/cUCUhpRSlGgVS89oFkdAmHmtY4hllXV9lChoBmgJaA9DCBIR/kUQ/3JAlIaUUpRoFUvYaBZHQJh5tVcUuct1fZQoaAZoCWgPQwg/NzRlp6JyQJSGlFKUaBVLyWgWR0CYeeUz9CNTdX2UKGgGaAloD0MIjzf5LXqgckCUhpRSlGgVS/9oFkdAmHoL/Ot4iXV9lChoBmgJaA9DCDJyFvY0I25AlIaUUpRoFUvUaBZHQJh6g0pEx7B1fZQoaAZoCWgPQwj/W8mOzQNzQJSGlFKUaBVL5mgWR0CYe1a5f+judX2UKGgGaAloD0MI+Wncm1+rckCUhpRSlGgVS/JoFkdAmHtcOkLx7XV9lChoBmgJaA9DCKcGms+5FnFAlIaUUpRoFUvQaBZHQJh7oKhL5AR1fZQoaAZoCWgPQwjrqdVXl/5xQJSGlFKUaBVL2GgWR0CYe8BZZB9kdX2UKGgGaAloD0MI4gZ8flj2cECUhpRSlGgVS/5oFkdAmHwUdaMaTHV9lChoBmgJaA9DCC5VaYtriXJAlIaUUpRoFUvTaBZHQJh8i5kK/mF1fZQoaAZoCWgPQwg9Kv7viA9uQJSGlFKUaBVL12gWR0CYfJhb4agmdX2UKGgGaAloD0MIPkFiu3uEcECUhpRSlGgVS+RoFkdAmH0EMw1zhnV9lChoBmgJaA9DCJ+Qnbcx/XJAlIaUUpRoFUvUaBZHQJh9DfEXLvF1fZQoaAZoCWgPQwhSKuEJ/a9yQJSGlFKUaBVL4mgWR0CYfZLWqcVhdX2UKGgGaAloD0MIE2ba/lXhcUCUhpRSlGgVS+FoFkdAmH3MC1Z1WHV9lChoBmgJaA9DCArcupsn83FAlIaUUpRoFUv1aBZHQJh+NJZntfJ1fZQoaAZoCWgPQwh+c3/1eIhyQJSGlFKUaBVL4mgWR0CYfjjkuHvddX2UKGgGaAloD0MIWYgOgeNhc0CUhpRSlGgVS/poFkdAmH542wV0tHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.225-1-MANJARO-x86_64-with-glibc2.36 #1 SMP PREEMPT Sat Nov 26 00:40:25 UTC 2022", "Python": "3.9.0", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu117", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f695c6f5160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f695c6f51f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f695c6f5280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f695c6f5310>", "_build": "<function ActorCriticPolicy._build at 0x7f695c6f53a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f695c6f5430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f695c6f54c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f695c6f5550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f695c6f55e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f695c6f5670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f695c6f5700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f695c6f3a80>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671019615971768691, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMBqW76Xwlg+TljCPnHDjb6Z/eA80iTSPQAAAAAAAAAAAJTgvE4ZxLyXHIg9o2jJu8jNK76+Rwy+AACAPwAAgD8AzLa7++fVPafFjb0O4r6+cm9DvW3UVjwAAAAAAAAAAICnkD2405Q/8gWePjQ4Lb93M+09MBkvPgAAAAAAAAAAmowPvUjDkLoOFYo3z7d2Mh+oCLrxvJ+2AACAPwAAgD9mHz69w0lPunSFPrpvK9001oiyOs3YXDkAAIA/AACAP5o6wT2zGSI/FaQnu6x9Cr+zdbE9Q4PUvQAAAAAAAAAAM7vru34XiT79Xds87CvYvovUfby8mSC9AAAAAAAAAABmroY8j2Z8uh5ORzUfCXYwVCbDOh4cUrQAAIA/AACAPxrzST0fLdm5LoLKNndLGrA3OdC7wtHttQAAgD8AAIA/4HJHvuGUrbyJEkG9oTawuza8FT7bnYo8AACAPwAAgD8zW9I7Xne0P5l0Jj8xFzu9DYfzu4/RFr4AAAAAAAAAAABw/ryBdbe8e33zPc+WCr3bTjO+E3LYvQAAgD8AAIA/c4ajPWcJHz/tsIG9rLcBvxxoZj0CFQe+AAAAAAAAAAAAcC49bK22u1sYQjzSgJU8vloqvbumfz0AAIA/AACAP5qYHL5C2Ac/e3dDvQcxE7/E0la+QyzhPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwr6dRITpcUCUhpRSlIwBbJRNBAGMAXSUR0CjtebjLjgidX2UKGgGaAloD0MImUuqtluucUCUhpRSlGgVS7toFkdAo7YA2/BWP3V9lChoBmgJaA9DCAAbECEutGVAlIaUUpRoFU3oA2gWR0CjtkG9YfW+dX2UKGgGaAloD0MIL058tWP+ckCUhpRSlGgVS91oFkdAo7ZG+yquKXV9lChoBmgJaA9DCKm+84sSbnFAlIaUUpRoFUvEaBZHQKO2hKV6eGx1fZQoaAZoCWgPQwgNOEvJ8sBxQJSGlFKUaBVLtGgWR0Cjtr9aUzKtdX2UKGgGaAloD0MI7PtwkJDybkCUhpRSlGgVS9FoFkdAo7bcORT0hHV9lChoBmgJaA9DCOlDF9S37XFAlIaUUpRoFUvdaBZHQKO285nUUfx1fZQoaAZoCWgPQwhrf2d7dExvQJSGlFKUaBVLvGgWR0CjtvYmLLpzdX2UKGgGaAloD0MIMepaex9OcECUhpRSlGgVS7ZoFkdAo7cJ/b0voXV9lChoBmgJaA9DCGeAC7JlnXBAlIaUUpRoFUu0aBZHQKO3SdQwbl11fZQoaAZoCWgPQwgd6KG2jTZwQJSGlFKUaBVNKwFoFkdAo7ddSQ5my3V9lChoBmgJaA9DCA6hSs3e9HJAlIaUUpRoFU0RAWgWR0Cjt6b+98JEdX2UKGgGaAloD0MITpfFxOavcECUhpRSlGgVS9JoFkdAo7fyOcUdrHV9lChoBmgJaA9DCHgJTn0gUXFAlIaUUpRoFUvtaBZHQKO39+z+m3x1fZQoaAZoCWgPQwhL5ljeldtxQJSGlFKUaBVL1WgWR0CjuASKNyYHdX2UKGgGaAloD0MI3PEmv8XIcUCUhpRSlGgVS9RoFkdAo7hlWGRFJHV9lChoBmgJaA9DCLZoAdoWnHFAlIaUUpRoFUvEaBZHQKO4hEmY0EZ1fZQoaAZoCWgPQwj1TC8x1sNyQJSGlFKUaBVL3WgWR0CjuIjp9qk/dX2UKGgGaAloD0MIFRqIZfMvckCUhpRSlGgVS/poFkdAo7iK+BYms3V9lChoBmgJaA9DCCNKe4OvynFAlIaUUpRoFUu1aBZHQKO4nVMEidJ1fZQoaAZoCWgPQwgWaHdIsetwQJSGlFKUaBVLsGgWR0CjuMQzk6tDdX2UKGgGaAloD0MIfQT+8LM9cECUhpRSlGgVS71oFkdAo7j+yRjjJnV9lChoBmgJaA9DCEMfLGMDUHBAlIaUUpRoFUvUaBZHQKO5Ct+TeO51fZQoaAZoCWgPQwgexqS/F3NwQJSGlFKUaBVLyWgWR0CjuQuxrzoVdX2UKGgGaAloD0MIT8qkhrYfcECUhpRSlGgVS9FoFkdAo7l3MEA5rHV9lChoBmgJaA9DCG1VEtmHpnJAlIaUUpRoFUvQaBZHQKO5jx4IKMN1fZQoaAZoCWgPQwgNN+Dzw/5RQJSGlFKUaBVLcGgWR0CjuZSaNMoMdX2UKGgGaAloD0MIgNWRI93hcECUhpRSlGgVS8VoFkdAo7m21lXii3V9lChoBmgJaA9DCOl/uRYthXNAlIaUUpRoFUvBaBZHQKO58+hXbM51fZQoaAZoCWgPQwg9npYfeKRzQJSGlFKUaBVL1WgWR0CjvPyqEOAidX2UKGgGaAloD0MIjdE6qhobckCUhpRSlGgVS+toFkdAo71J2B8QZnV9lChoBmgJaA9DCJQVw9WB4G9AlIaUUpRoFUvWaBZHQKO9l+lTFVF1fZQoaAZoCWgPQwjjqUca3E1yQJSGlFKUaBVLqWgWR0CjvaujZcs2dX2UKGgGaAloD0MIamtEMI5zcUCUhpRSlGgVS9JoFkdAo72shHLA6HV9lChoBmgJaA9DCA2nzM03VXBAlIaUUpRoFUveaBZHQKO9u4Cp3ot1fZQoaAZoCWgPQwg0SSwpN8JxQJSGlFKUaBVL62gWR0Cjvdx8twrEdX2UKGgGaAloD0MIaK8+HvoWckCUhpRSlGgVS+BoFkdAo73+HaewtHV9lChoBmgJaA9DCIEGmzoPF29AlIaUUpRoFUvTaBZHQKO+FjIaLn91fZQoaAZoCWgPQwgU0a+tnwVxQJSGlFKUaBVL42gWR0Cjvk189fTkdX2UKGgGaAloD0MIrtNIS6UtckCUhpRSlGgVS8toFkdAo76YQnQY13V9lChoBmgJaA9DCPvqqkDt33NAlIaUUpRoFUvTaBZHQKO+qVdHDrJ1fZQoaAZoCWgPQwgkQ46tJ9pyQJSGlFKUaBVLtWgWR0Cjvsl0gbIcdX2UKGgGaAloD0MIn47HDJTJcECUhpRSlGgVS+ZoFkdAo77LBCUornV9lChoBmgJaA9DCP9eCg/a43FAlIaUUpRoFUvOaBZHQKO/TpfQa751fZQoaAZoCWgPQwjh0jHn2b1xQJSGlFKUaBVLq2gWR0Cjv492HLzPdX2UKGgGaAloD0MIjzNN2D4TckCUhpRSlGgVTRcBaBZHQKO/pD2rXDp1fZQoaAZoCWgPQwiPNo5YCy1yQJSGlFKUaBVLzmgWR0Cjv+yZrpJPdX2UKGgGaAloD0MIgzC3ezlvcUCUhpRSlGgVS9hoFkdAo8AqFZgXuXV9lChoBmgJaA9DCLDIrx8iB3NAlIaUUpRoFUu5aBZHQKPAMFdszl91fZQoaAZoCWgPQwh7vfvjPXBwQJSGlFKUaBVL1GgWR0CjwEQdCE6DdX2UKGgGaAloD0MIhbAaS1jHcUCUhpRSlGgVS81oFkdAo8BS+Yc/+3V9lChoBmgJaA9DCBSvsrYpa3FAlIaUUpRoFU0EAWgWR0CjwJ1f/m1ZdX2UKGgGaAloD0MIUHEceHV5cECUhpRSlGgVS81oFkdAo8Ck0k4WDnV9lChoBmgJaA9DCJlFKLZCMHNAlIaUUpRoFUu1aBZHQKPA390A93d1fZQoaAZoCWgPQwj3AN2X83xyQJSGlFKUaBVL02gWR0CjwQ9L6DXfdX2UKGgGaAloD0MIIHu9++NacUCUhpRSlGgVS81oFkdAo8EQQJ5VwXV9lChoBmgJaA9DCN2U8lqJ3m5AlIaUUpRoFUvMaBZHQKPBMWi1y/91fZQoaAZoCWgPQwiduByvQFBBQJSGlFKUaBVN6ANoFkdAo8FN2Pkq+nV9lChoBmgJaA9DCIkmUMQipnFAlIaUUpRoFUu0aBZHQKPBmkep4r11fZQoaAZoCWgPQwi/fogNlt9xQJSGlFKUaBVL6mgWR0CjweK0lZ5idX2UKGgGaAloD0MIBVCMLBm+cUCUhpRSlGgVS7RoFkdAo8IP8yeqaXV9lChoBmgJaA9DCL2qs1rgYnJAlIaUUpRoFUvgaBZHQKPCRezlcQl1fZQoaAZoCWgPQwjbMXVX9t1xQJSGlFKUaBVLz2gWR0Cjwmo/7iyZdX2UKGgGaAloD0MIfZdSl8ylc0CUhpRSlGgVTQcBaBZHQKPCaZWq95B1fZQoaAZoCWgPQwiN7iB2JpBwQJSGlFKUaBVL3GgWR0CjwnyjpLVXdX2UKGgGaAloD0MIJc0f09qWckCUhpRSlGgVS9NoFkdAo8Kxiw0O3HV9lChoBmgJaA9DCKDgYkXNRHJAlIaUUpRoFUu5aBZHQKPCx3wkPc11fZQoaAZoCWgPQwip2QOtAPRyQJSGlFKUaBVL1GgWR0Cjwu1Li++NdX2UKGgGaAloD0MIt0QuOEOQcUCUhpRSlGgVS8toFkdAo8Mus3hn8XV9lChoBmgJaA9DCP8iaMzkbHJAlIaUUpRoFU0HAWgWR0Cjwz4raufVdX2UKGgGaAloD0MI+PnvwWtZb0CUhpRSlGgVS8FoFkdAo8NrL4etCHV9lChoBmgJaA9DCD7t8NckBHJAlIaUUpRoFUvyaBZHQKPDfAYYR/V1fZQoaAZoCWgPQwgnEkw1c85yQJSGlFKUaBVNFAFoFkdAo8O3YBeXzHV9lChoBmgJaA9DCBjNyvYhlm9AlIaUUpRoFUvGaBZHQKPDzHo5ggJ1fZQoaAZoCWgPQwh1sP7PobFwQJSGlFKUaBVLtmgWR0Cjw9L6UJOWdX2UKGgGaAloD0MI/pyC/GyETkCUhpRSlGgVS5loFkdAo8PqosI3SHV9lChoBmgJaA9DCDF+GvemxXNAlIaUUpRoFU15AmgWR0CjxAMtbs4UdX2UKGgGaAloD0MIur963LdQc0CUhpRSlGgVS8BoFkdAo8QezfJmunV9lChoBmgJaA9DCEJBKVo5dXFAlIaUUpRoFUvTaBZHQKPEeKNyYHB1fZQoaAZoCWgPQwjaOGItvrBvQJSGlFKUaBVL6mgWR0CjxKVc2R7rdX2UKGgGaAloD0MIEtkHWRYZbkCUhpRSlGgVS85oFkdAo8Ss8ifQKXV9lChoBmgJaA9DCO5dg740G3BAlIaUUpRoFUuvaBZHQKPE2Zk078x1fZQoaAZoCWgPQwjHgOz1bk1vQJSGlFKUaBVLyWgWR0CjxSsqaw2VdX2UKGgGaAloD0MILjcY6nAic0CUhpRSlGgVS+poFkdAo8UznNgSe3V9lChoBmgJaA9DCMfUXdmFk3JAlIaUUpRoFUvHaBZHQKPFUK2KEWZ1fZQoaAZoCWgPQwjRXKeR1hZxQJSGlFKUaBVLzGgWR0CjxWpZOi35dX2UKGgGaAloD0MI1eqrq8KlckCUhpRSlGgVS7VoFkdAo8WcTDfm93V9lChoBmgJaA9DCJpbIawGxnFAlIaUUpRoFUvEaBZHQKPFqd4mkWR1fZQoaAZoCWgPQwjZCMTrevlxQJSGlFKUaBVL0WgWR0CjxatGViWndX2UKGgGaAloD0MIm8dhML8AdECUhpRSlGgVTTEBaBZHQKPFtW9US7J1fZQoaAZoCWgPQwimfAiqRiRzQJSGlFKUaBVL1GgWR0CjxcR82JizdX2UKGgGaAloD0MID0dX6e7ub0CUhpRSlGgVS8xoFkdAo8XiAWi1zHV9lChoBmgJaA9DCIih1clZ/3JAlIaUUpRoFUvaaBZHQKPGGRxtHhF1fZQoaAZoCWgPQwhR3sfRnMBuQJSGlFKUaBVLxGgWR0CjxkaErXlKdX2UKGgGaAloD0MI3+F2aBgPc0CUhpRSlGgVS9JoFkdAo8aG2VmjCnV9lChoBmgJaA9DCBWNtb/z93JAlIaUUpRoFUvbaBZHQKPGpcSoOx11fZQoaAZoCWgPQwjUKY9uRIJwQJSGlFKUaBVLyGgWR0CjxqTVc2R8dX2UKGgGaAloD0MIzGJi8/GLcECUhpRSlGgVS85oFkdAo8b7ksBhhHV9lChoBmgJaA9DCOKrHcW5OHFAlIaUUpRoFUvPaBZHQKPHKQRPGhp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.225-1-MANJARO-x86_64-with-glibc2.36 #1 SMP PREEMPT Sat Nov 26 00:40:25 UTC 2022", "Python": "3.9.0", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu117", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 284.3153460923674, "std_reward": 15.460629673184405, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-14T15:12:33.411284"}
|