3M_iterations_128_batch
Browse files- LunarLander3M_128.zip +3 -0
- LunarLander3M_128/_stable_baselines3_version +1 -0
- LunarLander3M_128/data +94 -0
- LunarLander3M_128/policy.optimizer.pth +3 -0
- LunarLander3M_128/policy.pth +3 -0
- LunarLander3M_128/pytorch_variables.pth +3 -0
- LunarLander3M_128/system_info.txt +7 -0
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
LunarLander3M_128.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0bd33bd97259cd8194909c6164dd7150f7cf4804398dad4cff225012442850e
|
3 |
+
size 146730
|
LunarLander3M_128/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
LunarLander3M_128/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f695c6f5160>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f695c6f51f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f695c6f5280>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f695c6f5310>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f695c6f53a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f695c6f5430>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f695c6f54c0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f695c6f5550>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f695c6f55e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f695c6f5670>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f695c6f5700>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f695c6f3a80>"
|
20 |
+
},
|
21 |
+
"verbose": 0,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 3014656,
|
46 |
+
"_total_timesteps": 3000000.0,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671016809756252456,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEbgcD5uYTg/N+5IPlXABL9Mfck+gFUvvQAAAAAAAAAATQDYPXvGjrrmnZY7fvaltoSpEToBSZu1AAAAAAAAgD8AIJM65/66P8CH4Dy1Osg+HbBAuyjQ77wAAAAAAAAAAFBfiz4GpGA/SnT9vO23Cb/Kv6o+FJkGvgAAAAAAAAAAZsZBPeH4grpmpRA0hIobL/VUlbo4bpWzAACAPwAAgD/NPOi7RJjEPYjPzzuwE42+S5e2vWUKKz0AAAAAAAAAAK2YE76nfWo/E8NivtZ17b4HUGy+LN4VvQAAAAAAAAAAZuhRvbRyDz7bZJM+9sG2vgaKlj1N8wg9AAAAAAAAAABtvQa+bHugPyuGIr/frhu/JUcZvsrLtb4AAAAAAAAAAPo9A75QRok+QsTbPnZwn7595gO9Nj0fPgAAAAAAAAAAAE5uPJ1mdz6KGcu9y3bLvhI3i70cDzK9AAAAAAAAAAAgbSU+onkuP2ROqb3YaAG/ez8lPoLFFb4AAAAAAAAAADMv4LvPSlK8DMudPVOFJL5gAtO7lHSsvAAAgD8AAIA/M9swO/sFgbyeDuC9a5vrvbUopD3oV5s9AACAPwAAgD+abVO9iUWcP7nuiL79nh6/wIStvQ1KEr4AAAAAAAAAAJphYbwplBC6i6twObw+FzXQ2PA6ET+MuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.004885333333333408,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFvpgGRuOQ0CUhpRSlIwBbJRLuIwBdJRHQJhg0ood+5R1fZQoaAZoCWgPQwhxyXGn9PpmQJSGlFKUaBVN6ANoFkdAmGEQA6uGK3V9lChoBmgJaA9DCDBHj9/bH3NAlIaUUpRoFUvoaBZHQJhhLkhib2F1fZQoaAZoCWgPQwjl8bT8QItwQJSGlFKUaBVLz2gWR0CYYTvwmVqvdX2UKGgGaAloD0MIFJM3wMzVcECUhpRSlGgVS8BoFkdAmGGLPt2LYXV9lChoBmgJaA9DCEmCcAUUYXJAlIaUUpRoFU0TAWgWR0CYYhbfP5YYdX2UKGgGaAloD0MISRCugIJfcUCUhpRSlGgVS9poFkdAmGIbx3FDOXV9lChoBmgJaA9DCMjT8gNXl29AlIaUUpRoFUvTaBZHQJhiU32mHgx1fZQoaAZoCWgPQwjspL4sbcBxQJSGlFKUaBVLvGgWR0CYYlglWwNcdX2UKGgGaAloD0MImzv6X27pcUCUhpRSlGgVS9hoFkdAmGJfzOHFgnV9lChoBmgJaA9DCGzu6H+5+HNAlIaUUpRoFUvGaBZHQJhifZzxPO91fZQoaAZoCWgPQwiE1VjCWsZxQJSGlFKUaBVL7GgWR0CYYxHJcPe6dX2UKGgGaAloD0MISgosgOlzc0CUhpRSlGgVS+BoFkdAmGMXxz7uUnV9lChoBmgJaA9DCKhUibI3VHBAlIaUUpRoFUvmaBZHQJhjun+AEuB1fZQoaAZoCWgPQwgl6ZrJd+FyQJSGlFKUaBVNAwFoFkdAmGP9BWxQi3V9lChoBmgJaA9DCM41zND4UnBAlIaUUpRoFUviaBZHQJhkrTvy9VZ1fZQoaAZoCWgPQwjTTWIQmLdxQJSGlFKUaBVL3GgWR0CYZK3cHnlodX2UKGgGaAloD0MI0xQBTq/gckCUhpRSlGgVS9RoFkdAmGTcUM5OrXV9lChoBmgJaA9DCNrnMcoz03JAlIaUUpRoFUvTaBZHQJhlONbTtsx1fZQoaAZoCWgPQwhLICV2bdlwQJSGlFKUaBVL9WgWR0CYZVh3JPqLdX2UKGgGaAloD0MIGSDRBMo+cUCUhpRSlGgVS/JoFkdAmGV1mrbQC3V9lChoBmgJaA9DCKPp7GRwDnJAlIaUUpRoFUvEaBZHQJhlhVZLZjB1fZQoaAZoCWgPQwiUbeAO1GNxQJSGlFKUaBVLvmgWR0CYZbNnGsFMdX2UKGgGaAloD0MI83FtqJgGcUCUhpRSlGgVS9JoFkdAmGXEy+HrQnV9lChoBmgJaA9DCEMdVrhlO29AlIaUUpRoFUvRaBZHQJhl8py6tkp1fZQoaAZoCWgPQwh2w7ZFGb1uQJSGlFKUaBVL1WgWR0CYZgNbTtsvdX2UKGgGaAloD0MISFFn7qGrcECUhpRSlGgVS8poFkdAmGaWaQV9GHV9lChoBmgJaA9DCI+LahHR43BAlIaUUpRoFU0IAWgWR0CYbHSiudPMdX2UKGgGaAloD0MIfEj43p9Hc0CUhpRSlGgVS+5oFkdAmGyZoGpuM3V9lChoBmgJaA9DCHXN5Jvt53JAlIaUUpRoFUvHaBZHQJhs2TEBKcx1fZQoaAZoCWgPQwgD0v4HWIRxQJSGlFKUaBVL7WgWR0CYbUfw7T2GdX2UKGgGaAloD0MIGeJYF7fdQkCUhpRSlGgVS6ZoFkdAmG3Mhouf3HV9lChoBmgJaA9DCNAmh0/6pHBAlIaUUpRoFUvBaBZHQJhuAZzgdfd1fZQoaAZoCWgPQwi4PxcNmT1yQJSGlFKUaBVL7GgWR0CYbkElE7W/dX2UKGgGaAloD0MId/UqMjqnbkCUhpRSlGgVS81oFkdAmG5ZfhMrVnV9lChoBmgJaA9DCK+w4H7A03BAlIaUUpRoFUvxaBZHQJhuihM8HOd1fZQoaAZoCWgPQwh8uOS4U95zQJSGlFKUaBVLxmgWR0CYbqa1Cw8odX2UKGgGaAloD0MIz/i+uBQHckCUhpRSlGgVS7toFkdAmG6ujVQQ+XV9lChoBmgJaA9DCLpnXaPlMHJAlIaUUpRoFUvwaBZHQJhvF1+y7f51fZQoaAZoCWgPQwg2k2+2ecJxQJSGlFKUaBVNIwFoFkdAmG9GMfigkHV9lChoBmgJaA9DCErToGheqXFAlIaUUpRoFU0EAWgWR0CYb6ujRD1HdX2UKGgGaAloD0MIsMdESrPEcUCUhpRSlGgVS9VoFkdAmG/OwTufEnV9lChoBmgJaA9DCPfoDfeRo3NAlIaUUpRoFUv/aBZHQJhv6BZpztF1fZQoaAZoCWgPQwjXwiy0c0VzQJSGlFKUaBVLyWgWR0CYcIJIlMRIdX2UKGgGaAloD0MI0zHnGTuScECUhpRSlGgVS+hoFkdAmHDSlN1yNnV9lChoBmgJaA9DCLJMv0T8W3BAlIaUUpRoFUv3aBZHQJhw9i7TUiJ1fZQoaAZoCWgPQwgNcEG2LAJyQJSGlFKUaBVL02gWR0CYcR+OfdyldX2UKGgGaAloD0MIzNJOzWVdcUCUhpRSlGgVS8doFkdAmHFiLZSNwXV9lChoBmgJaA9DCEm70cd8x29AlIaUUpRoFUvZaBZHQJhx4OVgQYl1fZQoaAZoCWgPQwiARX790DhxQJSGlFKUaBVL0mgWR0CYchFoL5RCdX2UKGgGaAloD0MIY7ml1dAlcECUhpRSlGgVS9ZoFkdAmHIPs/pt8HV9lChoBmgJaA9DCBDqIoXy+XNAlIaUUpRoFUvKaBZHQJhyFw5vLox1fZQoaAZoCWgPQwhsy4CzlM1wQJSGlFKUaBVL02gWR0CYctEsasIWdX2UKGgGaAloD0MIX10VqMX3cECUhpRSlGgVS/ZoFkdAmHL/bj94vHV9lChoBmgJaA9DCEJcOXsnv3NAlIaUUpRoFUv0aBZHQJhzATtb9qF1fZQoaAZoCWgPQwil+WNam5VwQJSGlFKUaBVL9WgWR0CYc5ZWq95AdX2UKGgGaAloD0MI61OOyeJTc0CUhpRSlGgVS8NoFkdAmHP0/8l5W3V9lChoBmgJaA9DCMv49xnXzHBAlIaUUpRoFUvzaBZHQJh0InH/9511fZQoaAZoCWgPQwhbI4JxcJpwQJSGlFKUaBVL8GgWR0CYdDPomoitdX2UKGgGaAloD0MI2zLgLGUwcUCUhpRSlGgVTQcBaBZHQJh0YfuCwr11fZQoaAZoCWgPQwi1/SsrjdFyQJSGlFKUaBVL12gWR0CYdMXk5p8GdX2UKGgGaAloD0MIKnPzjei2c0CUhpRSlGgVS9loFkdAmHT4uoP07XV9lChoBmgJaA9DCPuSjQfbf29AlIaUUpRoFUvyaBZHQJh1IxpL26F1fZQoaAZoCWgPQwgNbmsLjxJxQJSGlFKUaBVL1WgWR0CYdTMX7+DOdX2UKGgGaAloD0MIfnN/9ThmcUCUhpRSlGgVS8FoFkdAmHWO58Sf2HV9lChoBmgJaA9DCJqWWBlNeXFAlIaUUpRoFUvWaBZHQJh14eFL39J1fZQoaAZoCWgPQwjS4La28BFwQJSGlFKUaBVL12gWR0CYdeh9srNGdX2UKGgGaAloD0MI1hpK7cXFcECUhpRSlGgVS+hoFkdAmHYKaTfR/nV9lChoBmgJaA9DCI4fKo3YDnFAlIaUUpRoFUvDaBZHQJh2TVnVXmx1fZQoaAZoCWgPQwiemssNBuJuQJSGlFKUaBVL1WgWR0CYdtQgs9SudX2UKGgGaAloD0MI7kCd8ugjb0CUhpRSlGgVS+VoFkdAmHcXhKlHjXV9lChoBmgJaA9DCOOkMO9x8HBAlIaUUpRoFUu7aBZHQJh3Sy3Td+J1fZQoaAZoCWgPQwhxrmGGRh1xQJSGlFKUaBVLwWgWR0CYd4y6+WWydX2UKGgGaAloD0MIh4ibU4kIcUCUhpRSlGgVS/NoFkdAmHfof0VafXV9lChoBmgJaA9DCEvJchLKknJAlIaUUpRoFUvJaBZHQJh36RKYiPh1fZQoaAZoCWgPQwgiGAeXjoRxQJSGlFKUaBVLxWgWR0CYeG9qUNaydX2UKGgGaAloD0MIk+UklL43cECUhpRSlGgVS+NoFkdAmHjJmVZ9u3V9lChoBmgJaA9DCMYYWMdxIXNAlIaUUpRoFU0CAWgWR0CYeM5v99+gdX2UKGgGaAloD0MISL99HfgfcUCUhpRSlGgVS9hoFkdAmHj8t9QXRHV9lChoBmgJaA9DCLxa7swEeXFAlIaUUpRoFUvnaBZHQJh5RAUtZmt1fZQoaAZoCWgPQwii8Nk6eKJxQJSGlFKUaBVLyWgWR0CYeX212JSBdX2UKGgGaAloD0MITFRvDex/cUCUhpRSlGgVS89oFkdAmHmtY4hllXV9lChoBmgJaA9DCBIR/kUQ/3JAlIaUUpRoFUvYaBZHQJh5tVcUuct1fZQoaAZoCWgPQwg/NzRlp6JyQJSGlFKUaBVLyWgWR0CYeeUz9CNTdX2UKGgGaAloD0MIjzf5LXqgckCUhpRSlGgVS/9oFkdAmHoL/Ot4iXV9lChoBmgJaA9DCDJyFvY0I25AlIaUUpRoFUvUaBZHQJh6g0pEx7B1fZQoaAZoCWgPQwj/W8mOzQNzQJSGlFKUaBVL5mgWR0CYe1a5f+judX2UKGgGaAloD0MI+Wncm1+rckCUhpRSlGgVS/JoFkdAmHtcOkLx7XV9lChoBmgJaA9DCKcGms+5FnFAlIaUUpRoFUvQaBZHQJh7oKhL5AR1fZQoaAZoCWgPQwjrqdVXl/5xQJSGlFKUaBVL2GgWR0CYe8BZZB9kdX2UKGgGaAloD0MI4gZ8flj2cECUhpRSlGgVS/5oFkdAmHwUdaMaTHV9lChoBmgJaA9DCC5VaYtriXJAlIaUUpRoFUvTaBZHQJh8i5kK/mF1fZQoaAZoCWgPQwg9Kv7viA9uQJSGlFKUaBVL12gWR0CYfJhb4agmdX2UKGgGaAloD0MIPkFiu3uEcECUhpRSlGgVS+RoFkdAmH0EMw1zhnV9lChoBmgJaA9DCJ+Qnbcx/XJAlIaUUpRoFUvUaBZHQJh9DfEXLvF1fZQoaAZoCWgPQwhSKuEJ/a9yQJSGlFKUaBVL4mgWR0CYfZLWqcVhdX2UKGgGaAloD0MIE2ba/lXhcUCUhpRSlGgVS+FoFkdAmH3MC1Z1WHV9lChoBmgJaA9DCArcupsn83FAlIaUUpRoFUv1aBZHQJh+NJZntfJ1fZQoaAZoCWgPQwh+c3/1eIhyQJSGlFKUaBVL4mgWR0CYfjjkuHvddX2UKGgGaAloD0MIWYgOgeNhc0CUhpRSlGgVS/poFkdAmH542wV0tHVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 736,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 128,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
LunarLander3M_128/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cafb109967b9211b1d9b5b3ef8d499d0871fe4551796239c436adc69c7a4f8d4
|
3 |
+
size 87545
|
LunarLander3M_128/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f297b9468f8e70d3b6218ef1a18fb9deaedaecf0a606360f965094b75ef9615
|
3 |
+
size 43073
|
LunarLander3M_128/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
LunarLander3M_128/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.225-1-MANJARO-x86_64-with-glibc2.36 #1 SMP PREEMPT Sat Nov 26 00:40:25 UTC 2022
|
2 |
+
Python: 3.9.0
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu117
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.23.5
|
7 |
+
Gym: 0.21.0
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 287.49 +/- 24.75
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7379e39160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7379e391f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7379e39280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7379e39310>", "_build": "<function ActorCriticPolicy._build at 0x7f7379e393a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7379e39430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7379e394c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7379e39550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7379e395e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7379e39670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7379e39700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7379e37bc0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVNQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBSMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAL+thRmXOpEfjnmDGR88ElhSqjtk676tu75KzdpBgbMg81oUckGIFt/w9mVU1SFPGz/i3VAqnlbS9/PvcbFON80wNe4p7fYp7C3282eTUBR91Matwv9DX19V9akLm9c9Kee9opEXdFNdnD5UIlB9UXlagMgiisAHUt2TCeXcGQaaubcYDkSS3RGUoPUlqaP2YaA6Xprs9w0X/6mRhhZ+XGEdf2F4N5dj8iH/FM8FjrY8riW2JW9lhZrvr9420sqeKwnaVvbm3CTtzttHrJgCG/zXVJtFEXbpV0lMISaNnH2ONzUwsAHAifLomjWj8bvtVIPzEB9hEkKcSSgz1kY+ERn57xKCmmwd5almorNqgSztU3UlYp7fXsnItHxXdf3Rt0/y5oIRjJUANucnP+vYA338qYR2cbX8uWagz/6GFCKPZKWeHpkH5ldoYfcHgYEFImSJtcECo1nhLE+KT+7ll1lcwkiTwxtgphVz74ZXWwtJW+m08kmL3yX/viPGKxluo8MmtNUkh+f4vjM/4mbdzZK2zlZqiqCTzbE/LIGsUxrzsTVHii1j9Grfrc+l0VA/kSTreJuUkerAeFllY9OarbWSYdXH1LRm4AXXOFuVQdmGr+/eivrJOAMAOoezeJECDqtEjbPmdL8QH+fFwInrSrrpnFurOzLjCqNZ4SqG9hP58PGVJWxZOlwjgxV0BWBu4r1SgrsVaPTXgx3SOU/C8do3Y31kyr7JUjWw/dQ+DDIJGu7utsR/t1tPmo7hQVHQX1Bx+FMZBT86NGd/vvIO3ijOxfNTCw25Cn4s2J+pTe8jwRQEuLFdW2qe2BlK6C0dDQUaSDYZBeY0Gtzz1F+BnCDvAD6Ul0TMMkNSgk61fVMSEMZI3enWChrCrpx1KzApov+RpZ9eGCj7dIvHcFcmf4nTmxrIaGGDnQs4gO5QlorFB7VXQWJtWS0jWGfMbJ2RkZ6mgxcvlcwCkGHDoujJA/W9XBQmLAhThMXgAYhujqPgdCofek76R9ixDpUNy/In2LW1WL+4lptM0Gnl7xoyEbIPDdI6M9tfbQSR0fXZz5sJUFSA4Fwt1Dk1Zt0+Ii56syptVjpdTh96Lq4RF/I9V047kt+0xMHerhCyr5bclGXoboGCPb9EyGWArW5Ubdhp+d3BCJhv85zfsfwo7GJ4FcaHTF+q+P5uO6ln4A26HjbdDp8+CLwCIH10emd6wREyToG6l6hObfEWaCy/7bboeElfKa4LftkP9aDlO4TpWfLd61wmiHXdt18od5ufNELbnYLRiz/CbucCUsKx8KekbGb56T83Jxy+O8P+I+7EbREZvR/LzZYNqo50AgcZfRWMKoIyGs7j8995F9Toed96sVIAOM15dh+GcLEJfG159Xim07pmWQ/clA6ysjT3qhlBondQV9+WptZIRQs3i6+frdBC9ZQ5rj14lB49/vJ27fOUHK2heDa+i3jAPN5JJELoHWAos+Vn8+ipunqpcWaRdvSIO0LiG3BxEDH8IPoQWRDelmzoLM/7dnTb5aoojzYUsrmosca0mY48uCWY1Jn5r0RfypsOAYzDrPhApUAkgk8sVrlBolLCeUtbynkH8Z9KrMan25Y1keSwL0JFVKqBqUunApv6i/m9N9ehQV9LITxvkwagpNwhtToFiFvp7Bv/cfNMrjdCt5GTxTofWoLxx/JJIckxhFFJjNnH8vHaKklKx4yCAf7arOVXjUfxp0S4RFztyXJJrk32XAtnq3WcoCi85WMO3B8x/bnCpz2NAPEjBOT8zd0QouwbL5eLSwEh/CvxVwzIpr8EmPe0CurHzmPSMSeQVt1Y5pMys/4akk8cbfzsNrRV9nE1ybywCV7d5kiPK3avhpWrG6nvf4fswsJrW4S2f7zcwT6Ww6rsMLkSnhvMR+0+RGOBYfZGXi3312xjG1h37nxKm8nw8KGONyecHlq28vvdLGb7N0XFv56Y//Nb0hw0aWp3gsY4s5MhBXABqv3Brwrc9Qi70aixNK5f6xJfPBWOZcIDLaQc8eFKDdvAXwIFKHgYC9PLH7saQsiXvKMTESUvuAyHF1H5Lwcj1uwb0ePrkFoGQuQlvxc5ehDm8Wri0bbI2DJEeLkOCKMT7rKlGlTYOr6tb303HzgbITlMDJRCkndl0dYfHPTaaNh5qscIu1ARtSLt3L+deooA6zoM5+GrFlOdLnIdu8Tev3fqkgqYr7MUUQ+1SqTcFY9pQo3fXEf8rGDRQ8f+utsC9nNqwl/os2H37rBWAqCmJYsgNwWTx8Ly4Mh+GqPyQ+BdPPFeZbv0cDXMqB3djlWgLDZvJaued8PGfSojp88CQaqIRV0jmehhOa/h0jbe1QLo8WurrHeKg3S57rBsWr+1SOGjGa6UyrXScEjrX1lxjRTk6W+rM33XF20d2iOr9oKNlQQgfwFDTm5x7dey1wU6IMKlifLAwTKAf7azEJCB0823JTDm2uPgiKa4RJwmyznWKN/ezOQ8W9iwoI5DUQE3gBrOnh+gx5u+poIGXMlY3HogIKRy+U5YkOKEgfmt5yHK1kyB4bF1WPNClqTCwGvKGavr62436LAqYeIwCYNxOxPuGyAR4jGLvt7Yyt0/NrNWZtXik0xruE0T5z45HezTw7i2dRjkpvCOABqUr6SDG3AXpssnG4naAaeti2n6jmrZi4KAC/msXj7nS4zfZ5WZ3p6hLROJ7xGK9mIDNBBoRqjiSL9K0rioc0DIgq/fR9S18hE/km+uuRRSi8O/mhRaLxu2xFFZR0MVl7EF93f64BDOpn6n4ZpW6JB3wP2ZnrGPuh+hCJkCUwL1R3djQLibyd0OUI682ldHoV1VexKzQ/hATOoETlvWMQofqFrqW+Jrp4aCnTHKqlcgpI500MhfIWN7WJZqQfL/xJ72bed7/4spXohhzFjaQubtKylG9jaaeoZ+Rx+ZWTD+zQwoO8aNNOph34ua60gsd7T12uuWQ1DayJL5oqCmLgIwROXh+SbJ6kwdaROLtdD8vi5TtP7Z/F3eQFxGOWp8SbDyyaMmhLXXOAYDm0Z5ZAYpXXyHBCE+ufbjS/VNF6cEICCuG8kF5TYClyWOyChkHTXZNzHJFxApQIBR2N6IUH2OgiVHfSKb3AsgpbYzhiGYegckgWVBWAk5t8osV2iOLddli9k8bT/yBDtTyMfrWy2od+KnaGYQXSXnDT2IY3SdAMoMIHQ45RRUvrofRcDbmYfLvpsBqXDApV+yJ/FfJXNtUTKjiOi6OgQvxt3cbMJ350OKtSD3BCMsxMKzVUWhdcZowFKSnHr1SJWLdKgcaoaZLxlT6oKXkHOlh/eo0pVZggcMWlGgKjAJ1NJSJiIeUUpQoSwNoDk5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNAAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 3014656, "_total_timesteps": 3000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671006293056860889, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqXIryuJYi6v7eEs3bPya4DgkC7uNXSMwAAgD8AAIA/ACiQvANaSrzq7+A9OifZPBpcn71lP5I7AACAPwAAgD+aveg9cW3FPjIoE74/+9S+wUcsPaVsf70AAAAAAAAAAGZEiLwPmUi8J224PS2YCzxFOaq9+xDwPAAAgD8AAIA/GkLevZM+pT9BqRK/SCsHvyth2r3EVrm+AAAAAAAAAABAHuK9XD9UukO1dTpA+Qs1dKAgu1dzjrkAAAAAAAAAAC3rVz4HikM/z1u3O9a9G78YBGM+nTzdvQAAAAAAAAAAgL1avRy0Mj7yRzo+YVHSviQmhj1sc7U9AAAAAAAAAAAzaL09Pe0Su+WPcL6SesU83JF1PP+PqL0AAAAAAACAP83vGL3UQ6g/YrERvmQ49b71wQ29Mg3VvQAAAAAAAAAAs60+PUk4Sj5QANy9KkHAvoLDgjw3fbm8AAAAAAAAAAAaQTC9nzLYu5jv/D3psj89yLcovUIzijsAAIA/AACAP1qTEL7fq5Y/yuWNvtvKDL9vn4y+cOEuvgAAAAAAAAAAZsXTPGwQqLsnaR698tmEO5/r6LwWjIU8AACAPwAAgD9AyKA9XGN1ugMFDjQWDtmucBfiOYjiorMAAIA/AACAP5qjBj0KDF+7SFZLvAx9kDzG3II8fQR4vQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYTPABdnzckCUhpRSlIwBbJRLz4wBdJRHQRk/91Iyj591fZQoaAZoCWgPQwj7c9GQ8f9vQJSGlFKUaBVLxWgWR0EZP/gs8HObdX2UKGgGaAloD0MICKuxhLWDckCUhpRSlGgVS71oFkdBGT/4q96C2HV9lChoBmgJaA9DCLAdjNgncHFAlIaUUpRoFUvmaBZHQRk/+LjNILB1fZQoaAZoCWgPQwiILNLEew5wQJSGlFKUaBVLzWgWR0EZP/jdG3F2dX2UKGgGaAloD0MIwTkjSjuVckCUhpRSlGgVTWoCaBZHQRk/+UjesPt1fZQoaAZoCWgPQwhL5IIz+GBSQJSGlFKUaBVLjmgWR0EZP/mznA6/dX2UKGgGaAloD0MIFk890mB9cUCUhpRSlGgVS9BoFkdBGT/5tDrquHV9lChoBmgJaA9DCK36XG0Fq3FAlIaUUpRoFUu2aBZHQRk/+bUx20R1fZQoaAZoCWgPQwiRY+sZgpxzQJSGlFKUaBVL9mgWR0EZP/oEaAFxdX2UKGgGaAloD0MIuvWaHpTOc0CUhpRSlGgVS8doFkdBGT/6S3nZCnV9lChoBmgJaA9DCLx0kxgE3HNAlIaUUpRoFUvkaBZHQRk/+mtrKvF1fZQoaAZoCWgPQwgcXDrmPCJxQJSGlFKUaBVLwWgWR0EZP/qTEehgdX2UKGgGaAloD0MI1qiHaHS0bkCUhpRSlGgVS75oFkdBGT/69sabWnV9lChoBmgJaA9DCGh3SDFAU3NAlIaUUpRoFUv0aBZHQRk/+yR6nix1fZQoaAZoCWgPQwgkKelhaOFQQJSGlFKUaBVLeWgWR0EZP/soddVvdX2UKGgGaAloD0MI9+gN91GicECUhpRSlGgVS9loFkdBGT/7VUn5SHV9lChoBmgJaA9DCDhJ88f063JAlIaUUpRoFU0yAWgWR0EZP/t5QDV6dX2UKGgGaAloD0MI/fZ14FzQckCUhpRSlGgVS75oFkdBGT/7zqAz6HV9lChoBmgJaA9DCN5y9WNTl3FAlIaUUpRoFUu9aBZHQRk//CJZGKB1fZQoaAZoCWgPQwjZXDXPESFFQJSGlFKUaBVLmGgWR0EZP/xY3irDdX2UKGgGaAloD0MIdJmaBC9UckCUhpRSlGgVS71oFkdBGT/890YCQ3V9lChoBmgJaA9DCOC+Dpyzb3JAlIaUUpRoFUvqaBZHQRk//P60Y0l1fZQoaAZoCWgPQwj/eK9amVNQQJSGlFKUaBVLfmgWR0EZP/1c+3YudX2UKGgGaAloD0MIWkqWk5DYcECUhpRSlGgVS+VoFkdBGT/9XwNLDnV9lChoBmgJaA9DCBZPPdIgpXFAlIaUUpRoFUuxaBZHQRk//WPk7wN1fZQoaAZoCWgPQwjkg57Nqg1yQJSGlFKUaBVL2WgWR0EZQBRc/Y8MdX2UKGgGaAloD0MIx53SwXqxcUCUhpRSlGgVS9NoFkdBGUAU+J53T3V9lChoBmgJaA9DCGufjseMbnJAlIaUUpRoFUv1aBZHQRlAFTolD4R1fZQoaAZoCWgPQwh6HAbzV91wQJSGlFKUaBVLxmgWR0EZQBVb+xW1dX2UKGgGaAloD0MIYadYNYg5cUCUhpRSlGgVS7hoFkdBGUAVd0OmSHV9lChoBmgJaA9DCFUuVP61eXNAlIaUUpRoFUvPaBZHQRlAFcdRR/F1fZQoaAZoCWgPQwihuU4jLd5xQJSGlFKUaBVL0mgWR0EZQBaMw5/9dX2UKGgGaAloD0MIX0TbMbW0ckCUhpRSlGgVS8loFkdBGUAWz/DLsHV9lChoBmgJaA9DCKg4DrzacW5AlIaUUpRoFUvBaBZHQRlAFteEIxB1fZQoaAZoCWgPQwggDafMzUhyQJSGlFKUaBVNKgFoFkdBGUAW4O09hnV9lChoBmgJaA9DCF+aIsDpaXFAlIaUUpRoFUuoaBZHQRlAF2hRIjJ1fZQoaAZoCWgPQwhJFFrWvW9wQJSGlFKUaBVLvmgWR0EZQBduPNmldX2UKGgGaAloD0MI2UElrmN0b0CUhpRSlGgVS7poFkdBGUAXtfAsTXV9lChoBmgJaA9DCF7WxALfWm9AlIaUUpRoFUvCaBZHQRlAGBYIBzV1fZQoaAZoCWgPQwiKc9TRMVxyQJSGlFKUaBVL52gWR0EZQBhJgTh6dX2UKGgGaAloD0MIf93pzpNNc0CUhpRSlGgVS9JoFkdBGUAZIIX0oXV9lChoBmgJaA9DCHEceLVcA3FAlIaUUpRoFUvOaBZHQRlAGYtSAH51fZQoaAZoCWgPQwglBKvq5eZxQJSGlFKUaBVLyWgWR0EZQBm1Iqb0dX2UKGgGaAloD0MIB0XzAFZVckCUhpRSlGgVS+JoFkdBGUAZ1Ba9snV9lChoBmgJaA9DCC2vXG9b13JAlIaUUpRoFUu1aBZHQRlAGloFmnR1fZQoaAZoCWgPQwiOd0fG6nFyQJSGlFKUaBVNBQFoFkdBGUAaWiwjdHV9lChoBmgJaA9DCOuQm+GGW25AlIaUUpRoFUu1aBZHQRlAGmoOx0N1fZQoaAZoCWgPQwgTKGIRAyJwQJSGlFKUaBVLuWgWR0EZQBpzollcdX2UKGgGaAloD0MIjJ5b6IpvckCUhpRSlGgVTU4BaBZHQRlAGsF4LTh1fZQoaAZoCWgPQwiGdHgIIwBzQJSGlFKUaBVL22gWR0EZQBrVAu7IdX2UKGgGaAloD0MIaMu5FFd4bkCUhpRSlGgVS7JoFkdBGUAa+XlbNnV9lChoBmgJaA9DCNAmh0+6W3RAlIaUUpRoFUvwaBZHQRlAHDMFlkJ1fZQoaAZoCWgPQwhevYqMzqdxQJSGlFKUaBVL2WgWR0EZQBxm4ZuRdX2UKGgGaAloD0MIgLvs113rckCUhpRSlGgVS+poFkdBGUAcbYAbQ3V9lChoBmgJaA9DCOHRxhFrm3NAlIaUUpRoFUvQaBZHQRlAHHCKJl91fZQoaAZoCWgPQwiqfxDJkABSQJSGlFKUaBVLwmgWR0EZQBz0Ao5QdX2UKGgGaAloD0MIUMO3sG4McECUhpRSlGgVS81oFkdBGUAdfH0btXV9lChoBmgJaA9DCBh7L77oqHFAlIaUUpRoFUvHaBZHQRlAHa9d/rl1fZQoaAZoCWgPQwjW5ZSAmD1vQJSGlFKUaBVLzGgWR0EZQB2uk+HKdX2UKGgGaAloD0MI9Wc/UgTwc0CUhpRSlGgVS79oFkdBGUAeJEH+qHV9lChoBmgJaA9DCA/Tvrm/OnNAlIaUUpRoFUvJaBZHQRlAHmFXq7l1fZQoaAZoCWgPQwiCHJQwE5hxQJSGlFKUaBVLwGgWR0EZQB66jzqbdX2UKGgGaAloD0MIMIDwoUSdckCUhpRSlGgVS9loFkdBGUAe5OnEVHV9lChoBmgJaA9DCK8JaY2BnHBAlIaUUpRoFUvNaBZHQRlAHvMGorF1fZQoaAZoCWgPQwjul09WTNNzQJSGlFKUaBVL4WgWR0EZQB8BcVxkdX2UKGgGaAloD0MIf2snSoJBcUCUhpRSlGgVS6poFkdBGUAf29zwMHV9lChoBmgJaA9DCB6pvvPLKHJAlIaUUpRoFU0DAWgWR0EZQCAq24NJdX2UKGgGaAloD0MIIlD9g8iuckCUhpRSlGgVS8poFkdBGUAgSG5+Y3V9lChoBmgJaA9DCNzxJr+FtnFAlIaUUpRoFU3bAmgWR0EZQCByfHxSdX2UKGgGaAloD0MIY3/ZPTlbcECUhpRSlGgVS9hoFkdBGUAgq0+kg3V9lChoBmgJaA9DCA0a+ic4H29AlIaUUpRoFUu8aBZHQRlAILCvHLl1fZQoaAZoCWgPQwiMogc+xolyQJSGlFKUaBVL5GgWR0EZQCDmmpEQdX2UKGgGaAloD0MIHXdKByslckCUhpRSlGgVS6xoFkdBGUAg8wWWQnV9lChoBmgJaA9DCMUdb/LbNXBAlIaUUpRoFUu0aBZHQRlAIZoRIz51fZQoaAZoCWgPQwg3jliLD3B0QJSGlFKUaBVLzmgWR0EZQCG9ugpSdX2UKGgGaAloD0MIlBEXgIYocECUhpRSlGgVS9NoFkdBGUAh2uxKQXV9lChoBmgJaA9DCLaEfNCzo25AlIaUUpRoFUuraBZHQRlAIhTUy591fZQoaAZoCWgPQwj1KjI64MBwQJSGlFKUaBVLuWgWR0EZQCJBQ3xXdX2UKGgGaAloD0MIl299WG/DckCUhpRSlGgVS9FoFkdBGUAizxUedXV9lChoBmgJaA9DCGeeXFNgJHNAlIaUUpRoFUvuaBZHQRlAIucbR4R1fZQoaAZoCWgPQwjsL7snz3ByQJSGlFKUaBVL22gWR0EZQCMaZ6UrdX2UKGgGaAloD0MItDhjmBNOcUCUhpRSlGgVS6FoFkdBGUAjb8tPHnV9lChoBmgJaA9DCBDM0eN3oW5AlIaUUpRoFUu4aBZHQRlAI5BnjAB1fZQoaAZoCWgPQwjMzw1NWSFxQJSGlFKUaBVL32gWR0EZQCP8xCY1dX2UKGgGaAloD0MIH/gYrPiicUCUhpRSlGgVS7BoFkdBGUAkJkbxVnV9lChoBmgJaA9DCG8vaYwWr3FAlIaUUpRoFUutaBZHQRlAJCPppvh1fZQoaAZoCWgPQwgNbmsLDwtxQJSGlFKUaBVL12gWR0EZQCQwiqyXdX2UKGgGaAloD0MIkYE8u/z1c0CUhpRSlGgVS7ZoFkdBGUAk1Q+EAnV9lChoBmgJaA9DCC9uowG8o3JAlIaUUpRoFUuuaBZHQRlAJOFWXC11fZQoaAZoCWgPQwjJkc7ASOhxQJSGlFKUaBVLq2gWR0EZQCUBzmwJdX2UKGgGaAloD0MIsoUgB+UjcECUhpRSlGgVS8JoFkdBGUAlIIKMN3V9lChoBmgJaA9DCIV7Zd7qOHFAlIaUUpRoFUv9aBZHQRlAJTAHE/B1fZQoaAZoCWgPQwgQPSmTmtxyQJSGlFKUaBVL0WgWR0EZQCXCLMs6dX2UKGgGaAloD0MIsTVbecnPbkCUhpRSlGgVS7NoFkdBGUAl0MCtBHV9lChoBmgJaA9DCBIvT+eKUnFAlIaUUpRoFUuwaBZHQRlAJfSDh991fZQoaAZoCWgPQwgfMA+Z8pdxQJSGlFKUaBVLx2gWR0EZQCY35JsgdX2UKGgGaAloD0MIutkfKHcac0CUhpRSlGgVS9JoFkdBGUAm/FkxynV9lChoBmgJaA9DCPfq46HvLnJAlIaUUpRoFUvDaBZHQRlAJ17k4m11fZQoaAZoCWgPQwjYSX1ZWkBuQJSGlFKUaBVLvGgWR0EZQCeF90A+dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.225-1-MANJARO-x86_64-with-glibc2.36 #1 SMP PREEMPT Sat Nov 26 00:40:25 UTC 2022", "Python": "3.9.0", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f695c6f5160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f695c6f51f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f695c6f5280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f695c6f5310>", "_build": "<function ActorCriticPolicy._build at 0x7f695c6f53a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f695c6f5430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f695c6f54c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f695c6f5550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f695c6f55e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f695c6f5670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f695c6f5700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f695c6f3a80>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3014656, "_total_timesteps": 3000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671016809756252456, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEbgcD5uYTg/N+5IPlXABL9Mfck+gFUvvQAAAAAAAAAATQDYPXvGjrrmnZY7fvaltoSpEToBSZu1AAAAAAAAgD8AIJM65/66P8CH4Dy1Osg+HbBAuyjQ77wAAAAAAAAAAFBfiz4GpGA/SnT9vO23Cb/Kv6o+FJkGvgAAAAAAAAAAZsZBPeH4grpmpRA0hIobL/VUlbo4bpWzAACAPwAAgD/NPOi7RJjEPYjPzzuwE42+S5e2vWUKKz0AAAAAAAAAAK2YE76nfWo/E8NivtZ17b4HUGy+LN4VvQAAAAAAAAAAZuhRvbRyDz7bZJM+9sG2vgaKlj1N8wg9AAAAAAAAAABtvQa+bHugPyuGIr/frhu/JUcZvsrLtb4AAAAAAAAAAPo9A75QRok+QsTbPnZwn7595gO9Nj0fPgAAAAAAAAAAAE5uPJ1mdz6KGcu9y3bLvhI3i70cDzK9AAAAAAAAAAAgbSU+onkuP2ROqb3YaAG/ez8lPoLFFb4AAAAAAAAAADMv4LvPSlK8DMudPVOFJL5gAtO7lHSsvAAAgD8AAIA/M9swO/sFgbyeDuC9a5vrvbUopD3oV5s9AACAPwAAgD+abVO9iUWcP7nuiL79nh6/wIStvQ1KEr4AAAAAAAAAAJphYbwplBC6i6twObw+FzXQ2PA6ET+MuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFvpgGRuOQ0CUhpRSlIwBbJRLuIwBdJRHQJhg0ood+5R1fZQoaAZoCWgPQwhxyXGn9PpmQJSGlFKUaBVN6ANoFkdAmGEQA6uGK3V9lChoBmgJaA9DCDBHj9/bH3NAlIaUUpRoFUvoaBZHQJhhLkhib2F1fZQoaAZoCWgPQwjl8bT8QItwQJSGlFKUaBVLz2gWR0CYYTvwmVqvdX2UKGgGaAloD0MIFJM3wMzVcECUhpRSlGgVS8BoFkdAmGGLPt2LYXV9lChoBmgJaA9DCEmCcAUUYXJAlIaUUpRoFU0TAWgWR0CYYhbfP5YYdX2UKGgGaAloD0MISRCugIJfcUCUhpRSlGgVS9poFkdAmGIbx3FDOXV9lChoBmgJaA9DCMjT8gNXl29AlIaUUpRoFUvTaBZHQJhiU32mHgx1fZQoaAZoCWgPQwjspL4sbcBxQJSGlFKUaBVLvGgWR0CYYlglWwNcdX2UKGgGaAloD0MImzv6X27pcUCUhpRSlGgVS9hoFkdAmGJfzOHFgnV9lChoBmgJaA9DCGzu6H+5+HNAlIaUUpRoFUvGaBZHQJhifZzxPO91fZQoaAZoCWgPQwiE1VjCWsZxQJSGlFKUaBVL7GgWR0CYYxHJcPe6dX2UKGgGaAloD0MISgosgOlzc0CUhpRSlGgVS+BoFkdAmGMXxz7uUnV9lChoBmgJaA9DCKhUibI3VHBAlIaUUpRoFUvmaBZHQJhjun+AEuB1fZQoaAZoCWgPQwgl6ZrJd+FyQJSGlFKUaBVNAwFoFkdAmGP9BWxQi3V9lChoBmgJaA9DCM41zND4UnBAlIaUUpRoFUviaBZHQJhkrTvy9VZ1fZQoaAZoCWgPQwjTTWIQmLdxQJSGlFKUaBVL3GgWR0CYZK3cHnlodX2UKGgGaAloD0MI0xQBTq/gckCUhpRSlGgVS9RoFkdAmGTcUM5OrXV9lChoBmgJaA9DCNrnMcoz03JAlIaUUpRoFUvTaBZHQJhlONbTtsx1fZQoaAZoCWgPQwhLICV2bdlwQJSGlFKUaBVL9WgWR0CYZVh3JPqLdX2UKGgGaAloD0MIGSDRBMo+cUCUhpRSlGgVS/JoFkdAmGV1mrbQC3V9lChoBmgJaA9DCKPp7GRwDnJAlIaUUpRoFUvEaBZHQJhlhVZLZjB1fZQoaAZoCWgPQwiUbeAO1GNxQJSGlFKUaBVLvmgWR0CYZbNnGsFMdX2UKGgGaAloD0MI83FtqJgGcUCUhpRSlGgVS9JoFkdAmGXEy+HrQnV9lChoBmgJaA9DCEMdVrhlO29AlIaUUpRoFUvRaBZHQJhl8py6tkp1fZQoaAZoCWgPQwh2w7ZFGb1uQJSGlFKUaBVL1WgWR0CYZgNbTtsvdX2UKGgGaAloD0MISFFn7qGrcECUhpRSlGgVS8poFkdAmGaWaQV9GHV9lChoBmgJaA9DCI+LahHR43BAlIaUUpRoFU0IAWgWR0CYbHSiudPMdX2UKGgGaAloD0MIfEj43p9Hc0CUhpRSlGgVS+5oFkdAmGyZoGpuM3V9lChoBmgJaA9DCHXN5Jvt53JAlIaUUpRoFUvHaBZHQJhs2TEBKcx1fZQoaAZoCWgPQwgD0v4HWIRxQJSGlFKUaBVL7WgWR0CYbUfw7T2GdX2UKGgGaAloD0MIGeJYF7fdQkCUhpRSlGgVS6ZoFkdAmG3Mhouf3HV9lChoBmgJaA9DCNAmh0/6pHBAlIaUUpRoFUvBaBZHQJhuAZzgdfd1fZQoaAZoCWgPQwi4PxcNmT1yQJSGlFKUaBVL7GgWR0CYbkElE7W/dX2UKGgGaAloD0MId/UqMjqnbkCUhpRSlGgVS81oFkdAmG5ZfhMrVnV9lChoBmgJaA9DCK+w4H7A03BAlIaUUpRoFUvxaBZHQJhuihM8HOd1fZQoaAZoCWgPQwh8uOS4U95zQJSGlFKUaBVLxmgWR0CYbqa1Cw8odX2UKGgGaAloD0MIz/i+uBQHckCUhpRSlGgVS7toFkdAmG6ujVQQ+XV9lChoBmgJaA9DCLpnXaPlMHJAlIaUUpRoFUvwaBZHQJhvF1+y7f51fZQoaAZoCWgPQwg2k2+2ecJxQJSGlFKUaBVNIwFoFkdAmG9GMfigkHV9lChoBmgJaA9DCErToGheqXFAlIaUUpRoFU0EAWgWR0CYb6ujRD1HdX2UKGgGaAloD0MIsMdESrPEcUCUhpRSlGgVS9VoFkdAmG/OwTufEnV9lChoBmgJaA9DCPfoDfeRo3NAlIaUUpRoFUv/aBZHQJhv6BZpztF1fZQoaAZoCWgPQwjXwiy0c0VzQJSGlFKUaBVLyWgWR0CYcIJIlMRIdX2UKGgGaAloD0MI0zHnGTuScECUhpRSlGgVS+hoFkdAmHDSlN1yNnV9lChoBmgJaA9DCLJMv0T8W3BAlIaUUpRoFUv3aBZHQJhw9i7TUiJ1fZQoaAZoCWgPQwgNcEG2LAJyQJSGlFKUaBVL02gWR0CYcR+OfdyldX2UKGgGaAloD0MIzNJOzWVdcUCUhpRSlGgVS8doFkdAmHFiLZSNwXV9lChoBmgJaA9DCEm70cd8x29AlIaUUpRoFUvZaBZHQJhx4OVgQYl1fZQoaAZoCWgPQwiARX790DhxQJSGlFKUaBVL0mgWR0CYchFoL5RCdX2UKGgGaAloD0MIY7ml1dAlcECUhpRSlGgVS9ZoFkdAmHIPs/pt8HV9lChoBmgJaA9DCBDqIoXy+XNAlIaUUpRoFUvKaBZHQJhyFw5vLox1fZQoaAZoCWgPQwhsy4CzlM1wQJSGlFKUaBVL02gWR0CYctEsasIWdX2UKGgGaAloD0MIX10VqMX3cECUhpRSlGgVS/ZoFkdAmHL/bj94vHV9lChoBmgJaA9DCEJcOXsnv3NAlIaUUpRoFUv0aBZHQJhzATtb9qF1fZQoaAZoCWgPQwil+WNam5VwQJSGlFKUaBVL9WgWR0CYc5ZWq95AdX2UKGgGaAloD0MI61OOyeJTc0CUhpRSlGgVS8NoFkdAmHP0/8l5W3V9lChoBmgJaA9DCMv49xnXzHBAlIaUUpRoFUvzaBZHQJh0InH/9511fZQoaAZoCWgPQwhbI4JxcJpwQJSGlFKUaBVL8GgWR0CYdDPomoitdX2UKGgGaAloD0MI2zLgLGUwcUCUhpRSlGgVTQcBaBZHQJh0YfuCwr11fZQoaAZoCWgPQwi1/SsrjdFyQJSGlFKUaBVL12gWR0CYdMXk5p8GdX2UKGgGaAloD0MIKnPzjei2c0CUhpRSlGgVS9loFkdAmHT4uoP07XV9lChoBmgJaA9DCPuSjQfbf29AlIaUUpRoFUvyaBZHQJh1IxpL26F1fZQoaAZoCWgPQwgNbmsLjxJxQJSGlFKUaBVL1WgWR0CYdTMX7+DOdX2UKGgGaAloD0MIfnN/9ThmcUCUhpRSlGgVS8FoFkdAmHWO58Sf2HV9lChoBmgJaA9DCJqWWBlNeXFAlIaUUpRoFUvWaBZHQJh14eFL39J1fZQoaAZoCWgPQwjS4La28BFwQJSGlFKUaBVL12gWR0CYdeh9srNGdX2UKGgGaAloD0MI1hpK7cXFcECUhpRSlGgVS+hoFkdAmHYKaTfR/nV9lChoBmgJaA9DCI4fKo3YDnFAlIaUUpRoFUvDaBZHQJh2TVnVXmx1fZQoaAZoCWgPQwiemssNBuJuQJSGlFKUaBVL1WgWR0CYdtQgs9SudX2UKGgGaAloD0MI7kCd8ugjb0CUhpRSlGgVS+VoFkdAmHcXhKlHjXV9lChoBmgJaA9DCOOkMO9x8HBAlIaUUpRoFUu7aBZHQJh3Sy3Td+J1fZQoaAZoCWgPQwhxrmGGRh1xQJSGlFKUaBVLwWgWR0CYd4y6+WWydX2UKGgGaAloD0MIh4ibU4kIcUCUhpRSlGgVS/NoFkdAmHfof0VafXV9lChoBmgJaA9DCEvJchLKknJAlIaUUpRoFUvJaBZHQJh36RKYiPh1fZQoaAZoCWgPQwgiGAeXjoRxQJSGlFKUaBVLxWgWR0CYeG9qUNaydX2UKGgGaAloD0MIk+UklL43cECUhpRSlGgVS+NoFkdAmHjJmVZ9u3V9lChoBmgJaA9DCMYYWMdxIXNAlIaUUpRoFU0CAWgWR0CYeM5v99+gdX2UKGgGaAloD0MISL99HfgfcUCUhpRSlGgVS9hoFkdAmHj8t9QXRHV9lChoBmgJaA9DCLxa7swEeXFAlIaUUpRoFUvnaBZHQJh5RAUtZmt1fZQoaAZoCWgPQwii8Nk6eKJxQJSGlFKUaBVLyWgWR0CYeX212JSBdX2UKGgGaAloD0MITFRvDex/cUCUhpRSlGgVS89oFkdAmHmtY4hllXV9lChoBmgJaA9DCBIR/kUQ/3JAlIaUUpRoFUvYaBZHQJh5tVcUuct1fZQoaAZoCWgPQwg/NzRlp6JyQJSGlFKUaBVLyWgWR0CYeeUz9CNTdX2UKGgGaAloD0MIjzf5LXqgckCUhpRSlGgVS/9oFkdAmHoL/Ot4iXV9lChoBmgJaA9DCDJyFvY0I25AlIaUUpRoFUvUaBZHQJh6g0pEx7B1fZQoaAZoCWgPQwj/W8mOzQNzQJSGlFKUaBVL5mgWR0CYe1a5f+judX2UKGgGaAloD0MI+Wncm1+rckCUhpRSlGgVS/JoFkdAmHtcOkLx7XV9lChoBmgJaA9DCKcGms+5FnFAlIaUUpRoFUvQaBZHQJh7oKhL5AR1fZQoaAZoCWgPQwjrqdVXl/5xQJSGlFKUaBVL2GgWR0CYe8BZZB9kdX2UKGgGaAloD0MI4gZ8flj2cECUhpRSlGgVS/5oFkdAmHwUdaMaTHV9lChoBmgJaA9DCC5VaYtriXJAlIaUUpRoFUvTaBZHQJh8i5kK/mF1fZQoaAZoCWgPQwg9Kv7viA9uQJSGlFKUaBVL12gWR0CYfJhb4agmdX2UKGgGaAloD0MIPkFiu3uEcECUhpRSlGgVS+RoFkdAmH0EMw1zhnV9lChoBmgJaA9DCJ+Qnbcx/XJAlIaUUpRoFUvUaBZHQJh9DfEXLvF1fZQoaAZoCWgPQwhSKuEJ/a9yQJSGlFKUaBVL4mgWR0CYfZLWqcVhdX2UKGgGaAloD0MIE2ba/lXhcUCUhpRSlGgVS+FoFkdAmH3MC1Z1WHV9lChoBmgJaA9DCArcupsn83FAlIaUUpRoFUv1aBZHQJh+NJZntfJ1fZQoaAZoCWgPQwh+c3/1eIhyQJSGlFKUaBVL4mgWR0CYfjjkuHvddX2UKGgGaAloD0MIWYgOgeNhc0CUhpRSlGgVS/poFkdAmH542wV0tHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.225-1-MANJARO-x86_64-with-glibc2.36 #1 SMP PREEMPT Sat Nov 26 00:40:25 UTC 2022", "Python": "3.9.0", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu117", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 287.48589826360967, "std_reward": 24.746829015173553, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-14T14:05:09.348617"}
|