15M_iterations_64_batch
Browse files- LunarLander15M_64.zip +3 -0
- LunarLander15M_64/_stable_baselines3_version +1 -0
- LunarLander15M_64/data +94 -0
- LunarLander15M_64/policy.optimizer.pth +3 -0
- LunarLander15M_64/policy.pth +3 -0
- LunarLander15M_64/pytorch_variables.pth +3 -0
- LunarLander15M_64/system_info.txt +7 -0
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
LunarLander15M_64.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47f285c2a1433e264926910b5c311306238f640a98c017ee017bf527e28df796
|
3 |
+
size 150387
|
LunarLander15M_64/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
LunarLander15M_64/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f695c6f5160>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f695c6f51f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f695c6f5280>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f695c6f5310>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f695c6f53a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f695c6f5430>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f695c6f54c0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f695c6f5550>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f695c6f55e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f695c6f5670>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f695c6f5700>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f695c6f3a80>"
|
20 |
+
},
|
21 |
+
"verbose": 0,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVNQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBSMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAALM1N8xamV4kYIhjNkB3hrEwiy4Q5eur+lEsucxcrbO6qNZC6HvXzyZmMKHTFtpie0SHTboydot/xLA8JbS77Y3XC6QUKE6sFPps5a3680dMXjC+lLwECzY7hXwT5xAm2Co6q6Ert5EpqOguLQtUg6AYwiu6UimBu1l4uuIZ6Ssm8FiW2rrAc2ymH5rMmJe/Y+wA0yOEdPCeZez3xGwabz3atFRXsiu12R7/Jsu28oQtrQUGtWCMr//9KN7+bIORFVnciIRrmwbJjxWxPv1UV2GXLPJaEoHW5pPPOlWHmroGjNiWiQLL184p7B/OdcTq4+WdPs8A4XCt4O4Q81nuyhkNKrDAvExZEqZ5JT4vVFdx46nFtVRJlpngrcEuUVRafOp6K08AzatFNxNiQsaF7ZeF5ps8W2mpAmENIsLCDMP9Ny0XPNnPh1p7V4LX9Dfmecl5AeJDQo0uXik270fD/+sULZIaewUb66VQamfza6EqUCrMYjvFdrgUqoh2bEkr2NAejvk1uO4D5Aj8hEAcHzll2ZQRK7rvFJdZHdYkFG0sV3V/VEFMSsWPSm8cnHvfORWiw4muD5SOzLXIch6JdrdRG4+Oj+D5c+BKPp6iayabV9nd8DYWHPkRxFEYL+VEgT7Auac5G2CEnwmnTRoqwIHvIxsvY7hWqocOQ63HK8r5doRcVFoXH8P92+UjyNbqzg9iXoD/vg57uzbGOc5iGJyr2ifmcXle3Auk3k4mRG7WNdvp8fcMKuxAw7crnJ+ZPs+F5r1z9jOSJwSFhwB6YeCGFpuCOA59z9rDdl50jKt426FZ1OemtPVzzHy1IbkI+yZSu3XBWYBPHYH0onOlTMm560ikAG55Xu/Ex7B1q6Mk3OG7EWsHW+IerL8fpSTMM7BYsmsM9Q70J8A/RDTtLe3yMLTIyGIyJDySlg4JclqQ6rJzrmug3ovAkqBEGQHQ498FpIajxSylJBXtcfrbdhHjBrECXPkJ2m44GpGURUH964GlOY9T+3QanKkD32OmaOJTbludzY8xh+nWIXqFomsiy9X5KiMcnm9BGsmZfyetpknvpXH1+OZu9adnAQ21v3TPEgopAtdojz+Bb2Rxu5/2OPK9r1p/MCiHHw/nhpsCEnk0h1Kw+xMPh2v4JDhUiRwxKhWGG8XHiDITZVeKA0DRB1ca1azyG8yIo+rsi+li0NsCJPdHYqfEmMDY98v4J2TWTpHaGWCh4gBeUxHAN2a8CzpJSMzSSJ5rw83y8RnYdIWTjKv8gDjF0Tb+5y2E3dKwtGCrq83baH8BfKzVrpTRJ8xTe1viTpeAJsSrFLbUP8jU+KsOrGWauItqMypPogYJYUqv7CljnZL4BoY3HWxz1ecKGnFCOzzaST6GfnSxBVYtANlgaqxspU52S65RX3VfohafpsW5yp6y9+iYqge0HYpVfVmuXWAxn10QM8GtWRxiqCfxH8OR6Q+q8g3zoHWe3UmWdHwGnJhuEOWMHMpobSAXTftFF+FWMDAvzxLLZ+sUNAub/uF11H2g28XoxL7uitJa4YlYn9btKDSjAaoVV1cjNtlEUS9XE0lm2QqcCro7L8aSS5MzvdveC7X3GozJ7tmARulamIHrjrdmyJoTd8QBIx6U7+/Aav0OOpF9sJuZghP00Z3c+NTwb5J4TyjgXPWTX28i3eisiLcSTorXQAYS3HHafj6JMBMpAksgKCTsUFOJymaNIXF4H636GCRt9Twl1ti7sXFJr9tVavhDIljxPWHYJw17HxnSM7Zb6Ktf9yUZ+KDlSW2OmK8CdxNtdIxFHPdqRHoe4NUQhkD7b01gnQFW6YjRusks0vCywOWA4RcSvkcHlNj+hL3bd+v+dFx03jhmZiqp8sCxZf7pu13USl8dYzINQDA4UG5OhU9iY9pzqojcwMeM4Kvrwrd5zGm9MSgjqrGmG6Q/Mu6gwlfbH6HWuTLuEyMlMvkaqiewnl/+8NnwB2k/8dDDKEvw1+g9Fk9gc96FJrVTgrNA+339cZ1Adi+6wgBy2lodX2HR7/I3spOgHnrTsvSVYzOVHo/4v56K4KQN5GR7piuC0B7O6mHJScm7P9vSTOgRqMWHeBJEUdFbH443QMOXBFEl54Xw1wlnPDxiPRmPzm5Z2gv9SsJKd5suhJldOv5tOOYjbSk/NxY/u+ADWoG8wg0KxKB96JlQGcVbp+cbcDMJGRMjw9KqojE5d4ajSb9DYjJqoUAANgTnZt34uDmirY+YeCAw5p/zitdTPIZcO+bd34QTveh2d/rMJFSzPz1q/87OEf49L4L3IboPw/RdhRz0NNtNpLeYaeU0gZ/92qcuS4JGaNMDZST6ciAuMQ/81guBDfwpGnxzZfIXwxHbV6IkN3h7gQ47dS/q6bZc3tN+LMKpajiGZQS6Io/N3l/RNqL93QtUIChc6TnN7ynVbo7MIkg9AwZFfGXAaGDn12SQDgqdxrqnJVTdCzZCDbcT+ly4xklYx/pC9Qk8saimJ6dOLdrCqjsFUFJZxaTU/F90xb4MXBmR69rumBfPZXoJrJBIbRFTlBiizHUR00EE8JUg9HNGzLzAq0lw8G0WzUloAwwwtkbEHv5UoX8gJwDDFR69kRiAsu3dglj4ks5Usv76AEo/6yI4BfWkO70iv7cBtd/kPDXEzGEJJSfJRu+3vG/cIZMu5Gsa1qojx7siC10eM51qg25MSRqAOBV1pLEFszKNhpqby0GzpLjnSOjCiUN4qQfKg31K4cS4SRZIYFQACm5F/tFtBlK0Df3dTa8Kb96O05Xx/SrhHT7k4NFI5EcU45x55peydUtOKpd7gA7YK6pzEftfNAPv7C2KPji+ERAYy8SgwcoDtXl8zncz9UHNs2+iwmfBXLcB0jUz6xjOlDIC9OiG6ZV5uqi9p2I1EublJ2m9aRIm6FZGdZ8mnDlnrdI78PvGUxfZzVbOOLAKvS6ScG71YQl/NR6YMfXGx0J623BYzBUIYulc/b4XlRt3F1WSJC8uANEhBm0FPDn13wJ//vTBSnNJT32ixPZOVrnmPVwSUF3SkjEu9yz2I9ddlhZbPECajXnw9wHMDbHrwoAH84KbL2CxbveGXq10pJq/1YKbFn4VJZ94vXhrZHgmPAC71b4d7KaCwQzsxDmSFZA3/KPwJQUJ3bT/bMu00tz7MZyQZMM0thzOSHCroCHgkOLoVXly0opjll5I7PI+73Lxxhvq2NFakuwbNlGnupMo4SFNRBcFzRHbkPyrHnGpVSCbVhzu9EWtVXEnd3z0Njn2mXK0GoSDlv3uxpPsQJvYzEbCNqZiq4ExefLNfezS/IVSh5LUjz+iCr9/YlGgKjAJ1NJSJiIeUUpQoSwNoDk5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNAAF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": "RandomState(MT19937)"
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 15007744,
|
46 |
+
"_total_timesteps": 15000000.0,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671039213424963915,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3HmzzXf2u7VfiBvmHthL7Y77K918wDPwAAgD8AAAAAAGC5uyTqDzyah0c+16x5vlyTAz6CiRu+AAAAAAAAgD9ztJ6+ThZGPzi8ez4Okl+/eCwMv6YzuT4AAAAAAAAAABpDQ74o9ZA/7d7LvsXFFL+FQP2+m6x8vgAAAAAAAAAA07J7vjLcXz92N56+OtfpvoT/Ab/KE2W+AAAAAAAAAABmgS29KYRcuhuTnjqVh5Y1ECsCOxSzurkAAIA/AACAP5rehLyu6mg/sDCBvVQfir8H8bm8kYQFvQAAAAAAAAAAzTRovOyxyLk192qzoQExL0GtDTt+FLkzAACAPwAAgD+aT9e8FEizuhYSmTbGgpsxWbq7OcWbs7UAAIA/AACAP5NqHr7kmAM/tcK8PW6OQb/bj6u+gV1JPgAAAAAAAAAAmnmzuvW3Dz949fY8nBZnv/O1Kru7qoM9AAAAAAAAAABmIlU8j3IuupiBVrov5+Q01nYNu+XCeTkAAIA/AACAP41+wj1ajK0+09VlvvrNKL/zLNA9NaVivgAAAAAAAAAAM4r+PAd4Nj6SovK8vJYTvwkNlD3+Qai8AAAAAAAAAABtqCK+r1YrP/a3nz2mHFG/EfjLviWKLj4AAAAAAAAAAIC5Sr1xvjs8KvW3PlNGcL5S7GQ+E70+vwAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0005162666666667093,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILh9JSQ9fb0CUhpRSlIwBbJRLmYwBdJRHQPEZljYao/B1fZQoaAZoCWgPQwgiNIKNayRzQJSGlFKUaBVLlmgWR0DxGZZ33HrAdX2UKGgGaAloD0MIjsh3KTX6ckCUhpRSlGgVS5loFkdA8RmX0QK8c3V9lChoBmgJaA9DCP6arFGPGW9AlIaUUpRoFUuYaBZHQPEZmApWmxd1fZQoaAZoCWgPQwixFwrYDiNyQJSGlFKUaBVLnGgWR0DxGZgzj3mFdX2UKGgGaAloD0MIIjfDDTjPckCUhpRSlGgVS7hoFkdA8RmYUxmCiHV9lChoBmgJaA9DCPnbniAx+XNAlIaUUpRoFUvKaBZHQPEZm093bEh1fZQoaAZoCWgPQwhUyQBQBfNyQJSGlFKUaBVLuWgWR0DxGZtQHAymdX2UKGgGaAloD0MIHhoWo24Sc0CUhpRSlGgVS71oFkdA8RnGMpCrtHV9lChoBmgJaA9DCBKlvcGXpXJAlIaUUpRoFUunaBZHQPEZyMBKcut1fZQoaAZoCWgPQwh1kq0uZ1NyQJSGlFKUaBVLrWgWR0DxGckslb/wdX2UKGgGaAloD0MI8zl3u56Dc0CUhpRSlGgVS6doFkdA8RnJlRP423V9lChoBmgJaA9DCMyZ7Qr9xHJAlIaUUpRoFUuiaBZHQPEZyzDJlrd1fZQoaAZoCWgPQwiqCg3EsshvQJSGlFKUaBVLiWgWR0DxGcunUlRhdX2UKGgGaAloD0MIGvm84ukscUCUhpRSlGgVS6BoFkdA8RnLwb+98XV9lChoBmgJaA9DCD6UaMmj2XBAlIaUUpRoFUumaBZHQPEZy+QlruZ1fZQoaAZoCWgPQwhxcr9DkQtwQJSGlFKUaBVLj2gWR0DxGcxWNFSbdX2UKGgGaAloD0MI0o4bfncTc0CUhpRSlGgVS9NoFkdA8RnNV5OafHV9lChoBmgJaA9DCKK4402+rnFAlIaUUpRoFUujaBZHQPEZzYVsUIt1fZQoaAZoCWgPQwgOg/kr5KZyQJSGlFKUaBVLyWgWR0DxGdBC/XXidX2UKGgGaAloD0MI7WZGP9pQc0CUhpRSlGgVTZYBaBZHQPEZ0NVGTcJ1fZQoaAZoCWgPQwi/8iA9RSdyQJSGlFKUaBVLqWgWR0DxGdEz19ORdX2UKGgGaAloD0MIC0eQSnHrckCUhpRSlGgVS7FoFkdA8RnR3k92YHV9lChoBmgJaA9DCKjjMQMVpXFAlIaUUpRoFUuQaBZHQPEZ0knAqNJ1fZQoaAZoCWgPQwgfFJSilTR0QJSGlFKUaBVLymgWR0DxGdNEzO5bdX2UKGgGaAloD0MItk3xuGjZcECUhpRSlGgVS6hoFkdA8RnUJy+6AnV9lChoBmgJaA9DCJd0lIPZanNAlIaUUpRoFUvAaBZHQPEZ1ie4Cp51fZQoaAZoCWgPQwhKQEzCRTxzQJSGlFKUaBVLlmgWR0DxGdZEX+ERdX2UKGgGaAloD0MIe0rOiX1jckCUhpRSlGgVS6JoFkdA8RnWX6Eal3V9lChoBmgJaA9DCMkh4ubU5XFAlIaUUpRoFUufaBZHQPEZ1lWU8mt1fZQoaAZoCWgPQwg4ukp3l19yQJSGlFKUaBVLsWgWR0DxGdbR2KVIdX2UKGgGaAloD0MIdsB1xYwfcECUhpRSlGgVS7NoFkdA8RnXZSWJJ3V9lChoBmgJaA9DCEhrDDrhEHRAlIaUUpRoFUu4aBZHQPEZ2Z9PUKB1fZQoaAZoCWgPQwgKKxVU1BxzQJSGlFKUaBVLxWgWR0DxGdpbEP1+dX2UKGgGaAloD0MILSeh9AVWc0CUhpRSlGgVS5hoFkdA8RnbTcAR03V9lChoBmgJaA9DCM0d/S/XeHJAlIaUUpRoFUuqaBZHQPEZ24kgOjJ1fZQoaAZoCWgPQwgj9DP1umxzQJSGlFKUaBVLrWgWR0DxGdxjFyaNdX2UKGgGaAloD0MIQ1n4+lpYcUCUhpRSlGgVS6doFkdA8Rnc94A0bnV9lChoBmgJaA9DCM3OonfqDHNAlIaUUpRoFUutaBZHQPEZ3cvnKW91fZQoaAZoCWgPQwj4+lqXmmdyQJSGlFKUaBVLnWgWR0DxGd3gbIcSdX2UKGgGaAloD0MIFvpgGVtrcECUhpRSlGgVS5doFkdA8RneRGhEjXV9lChoBmgJaA9DCOaRPxg4unBAlIaUUpRoFUuTaBZHQPEZ4AHgP3B1fZQoaAZoCWgPQwjQC3cujNxyQJSGlFKUaBVLm2gWR0DxGeBtu1nedX2UKGgGaAloD0MIh8Q9lj6EckCUhpRSlGgVS6NoFkdA8Rngv779AHV9lChoBmgJaA9DCD4g0Jm0gXFAlIaUUpRoFUuvaBZHQPEZ4bWsijd1fZQoaAZoCWgPQwgVysLXl+5yQJSGlFKUaBVLrmgWR0DxGeIhA4XGdX2UKGgGaAloD0MIvQFmvkO1ckCUhpRSlGgVS7FoFkdA8Rni/o3aSXV9lChoBmgJaA9DCLR224UmRnNAlIaUUpRoFUuhaBZHQPEZ5P6k6911fZQoaAZoCWgPQwhwC5bqAn5xQJSGlFKUaBVLrGgWR0DxGeUTzd1udX2UKGgGaAloD0MItqLNcS5ecECUhpRSlGgVS5RoFkdA8RnlI86mwnV9lChoBmgJaA9DCGnDYWlg/WVAlIaUUpRoFU3oA2gWR0DxGeXpUgjhdX2UKGgGaAloD0MICw3Estmac0CUhpRSlGgVS6RoFkdA8RnmfWcz7HV9lChoBmgJaA9DCAJjfQOTqXJAlIaUUpRoFUusaBZHQPEZ51tgrpd1fZQoaAZoCWgPQwhz9Pi9TbhvQJSGlFKUaBVLlmgWR0DxGedpfx+bdX2UKGgGaAloD0MIBOj3/VtYcUCUhpRSlGgVS51oFkdA8Rnnxbr1NHV9lChoBmgJaA9DCPPGSWEe1XFAlIaUUpRoFUu0aBZHQPEZ6HuLJjl1fZQoaAZoCWgPQwiNf59xIXByQJSGlFKUaBVLrWgWR0DxGej92ovSdX2UKGgGaAloD0MIUUzeADPdc0CUhpRSlGgVS61oFkdA8RnqltGd7XV9lChoBmgJaA9DCCb9vRQeAnBAlIaUUpRoFUuoaBZHQPEZ6rgzguR1fZQoaAZoCWgPQwgofSHkPGFzQJSGlFKUaBVLmWgWR0DxGer779AHdX2UKGgGaAloD0MIi/okd9h/cECUhpRSlGgVS5ZoFkdA8RnrVWCEpXV9lChoBmgJaA9DCLH7juGxYnFAlIaUUpRoFUubaBZHQPEZ7CocaOx1fZQoaAZoCWgPQwj9bOS66bpzQJSGlFKUaBVLvmgWR0DxGexKsdT6dX2UKGgGaAloD0MIeVp+4OqjckCUhpRSlGgVS55oFkdA8RntuHFglXV9lChoBmgJaA9DCCHKF7RQ+nBAlIaUUpRoFUumaBZHQPEZ7jKB/Zx1fZQoaAZoCWgPQwjQJRx6C3ZzQJSGlFKUaBVLsmgWR0DxGe7qQzUJdX2UKGgGaAloD0MIJoqQul1ickCUhpRSlGgVS6hoFkdA8RnvFb3XZ3V9lChoBmgJaA9DCASSsG8nVHFAlIaUUpRoFUulaBZHQPEZ70pRXOp1fZQoaAZoCWgPQwjHZHH/UZ9yQJSGlFKUaBVLq2gWR0DxGfC+3H7xdX2UKGgGaAloD0MIeo8zTdi4cUCUhpRSlGgVS6xoFkdA8RnxGCdz4nV9lChoBmgJaA9DCDYBhuWPsXNAlIaUUpRoFUu2aBZHQPEZ8UGu9vl1fZQoaAZoCWgPQwh3vp8ab8BwQJSGlFKUaBVLh2gWR0DxGfJ/iYLLdX2UKGgGaAloD0MI4etrXWqpc0CUhpRSlGgVS8NoFkdA8Rny+GKyfXV9lChoBmgJaA9DCMk7hzIUWnNAlIaUUpRoFUu3aBZHQPEZ8vvYvnN1fZQoaAZoCWgPQwg9uhEWFQtxQJSGlFKUaBVLoWgWR0DxGfNDBuXNdX2UKGgGaAloD0MIY9F0dnJhcECUhpRSlGgVS5ZoFkdA8Rn0SKBNEnV9lChoBmgJaA9DCBb3H5mOpXRAlIaUUpRoFUvLaBZHQPEZ9bUaybB1fZQoaAZoCWgPQwhQ/YNIRvhxQJSGlFKUaBVLzGgWR0DxGfX+OwPidX2UKGgGaAloD0MIzm4tk2FBdECUhpRSlGgVS8BoFkdA8Rn2agElmnV9lChoBmgJaA9DCDiGAODYqG5AlIaUUpRoFUukaBZHQPEZ9pId2gZ1fZQoaAZoCWgPQwim7V9ZKdZwQJSGlFKUaBVLlGgWR0DxGfcma6SUdX2UKGgGaAloD0MIL4uJzcf1cUCUhpRSlGgVS5toFkdA8Rn3UfDDTHV9lChoBmgJaA9DCOkOYmdKj3NAlIaUUpRoFUuwaBZHQPEZ98wvg3t1fZQoaAZoCWgPQwhsPxnjg6dzQJSGlFKUaBVLtmgWR0DxGfkuQp4KdX2UKGgGaAloD0MIxuBh2nfTcECUhpRSlGgVS6VoFkdA8Rn6XctXgnV9lChoBmgJaA9DCLSOqiaIwHNAlIaUUpRoFUuwaBZHQPEZ+nGACnx1fZQoaAZoCWgPQwiWr8vwn5pxQJSGlFKUaBVLoWgWR0DxGftS1Vo6dX2UKGgGaAloD0MIFCF1Ozuhc0CUhpRSlGgVS7xoFkdA8Rn7aioKlnV9lChoBmgJaA9DCMkDkUUadHBAlIaUUpRoFUuzaBZHQPEZ/M274BV1fZQoaAZoCWgPQwia0Y+GUyJzQJSGlFKUaBVLvWgWR0DxGf1Zpi7TdX2UKGgGaAloD0MIYwlrY6wLdECUhpRSlGgVS79oFkdA8Rn96FVT73V9lChoBmgJaA9DCDc2O1L9vm9AlIaUUpRoFUudaBZHQPEZ/ngpBop1fZQoaAZoCWgPQwiSkbOwp9RzQJSGlFKUaBVLxmgWR0DxGf9No8ISdX2UKGgGaAloD0MI28NeKCBZc0CUhpRSlGgVS59oFkdA8Rn/aIacZ3V9lChoBmgJaA9DCNWRI51B3nBAlIaUUpRoFUubaBZHQPEZ/9jEvTR1fZQoaAZoCWgPQwhZNnNIajVyQJSGlFKUaBVLrmgWR0DxGgBMUAT7dX2UKGgGaAloD0MIXKyowXRzcUCUhpRSlGgVS6toFkdA8RoBcfA9FHV9lChoBmgJaA9DCFNb6iBv13NAlIaUUpRoFUvNaBZHQPEaAXK1XvJ1fZQoaAZoCWgPQwgkfsUabrdzQJSGlFKUaBVLu2gWR0DxGgG+De0pdX2UKGgGaAloD0MIjnbc8DtCb0CUhpRSlGgVS6JoFkdA8RoCKjBVMnVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 3664,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
LunarLander15M_64/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:935c8da4524d8cc7c3d494376a1033d5ba21b2300b8d7402321748f02299bc09
|
3 |
+
size 87545
|
LunarLander15M_64/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ba8dacfc3bfb8c7029f477405501537a192a9e9957815fd9caacccf6eed0851
|
3 |
+
size 43073
|
LunarLander15M_64/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
LunarLander15M_64/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.225-1-MANJARO-x86_64-with-glibc2.36 #1 SMP PREEMPT Sat Nov 26 00:40:25 UTC 2022
|
2 |
+
Python: 3.9.0
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu117
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.23.5
|
7 |
+
Gym: 0.21.0
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 291.52 +/- 11.95
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f695c6f5160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f695c6f51f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f695c6f5280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f695c6f5310>", "_build": "<function ActorCriticPolicy._build at 0x7f695c6f53a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f695c6f5430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f695c6f54c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f695c6f5550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f695c6f55e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f695c6f5670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f695c6f5700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f695c6f3a80>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 10010624, "_total_timesteps": 10000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671023773861668087, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGASKz5nPog/KL3PPimvE7+/YqU+V7+8PgAAAAAAAAAAmuKQPSxkrz/Hipo+8ze1viIBJj7jgIY+AAAAAAAAAABNlaM9qWq2P9p2uD7ncGS+O6s7Pp5mmj4AAAAAAAAAADOX+zt7TIe6qIoYtMdpB69ABCM7QR6vMwAAgD8AAIA/mj+fPMPZPboiQ9q69rgxtvuqPDsGbv45AAAAAAAAgD9mQli8e9qMupxqtznt6O64SUiFugCcubgAAIA/AACAP2aWt7ysIvA8PHumvN17rr5ogBG+y6WavQAAAAAAAAAAzQh4PPZsXbpOfUq5M6Y5tFUONDpFuG04AACAPwAAgD/TZEW+BY3/PoJnLD4Mxy2/niPovoqMLj4AAAAAAAAAALMYSD2hYra8+tFovi+9wL3fsUC7dd1SPgAAgD8AAIA/mknuPMPoW7xlw/a89+UEPV9NTj2j8QA7AACAPwAAgD+gPY4+u009PzKMdL7wvFK/nF3iPtxtmr4AAAAAAAAAAE11Zz2vfBc+2lunvkov474zOge7vmt4vgAAAAAAAAAAzdUOPWxTv7vD8bC7wlSxPHyuCj0qvJS9AACAPwAAgD+tkyk+Xq0BP2ALcL0+qD+/zsHRPrNFKL4AAAAAAAAAAO2OMD5fDRs/hlh/PBu3OL+Kkts+J78IvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0010623999999999079, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInE6y1eVGcUCUhpRSlIwBbJRLrYwBdJRHQLJrZsvIwM91fZQoaAZoCWgPQwjcErngzNlxQJSGlFKUaBVLo2gWR0Cya34R28qXdX2UKGgGaAloD0MIStQLPg3zckCUhpRSlGgVS69oFkdAsmt/uRcNY3V9lChoBmgJaA9DCHYyOEpeenJAlIaUUpRoFUuwaBZHQLJrgAAhje91fZQoaAZoCWgPQwgIjsu4qU1yQJSGlFKUaBVLymgWR0Cya5N7ngYQdX2UKGgGaAloD0MIfcucLkttc0CUhpRSlGgVS8hoFkdAsmuhtGd7OXV9lChoBmgJaA9DCPDd5o0TDXNAlIaUUpRoFUvGaBZHQLJrsFx4ptt1fZQoaAZoCWgPQwiNCpxsw9VyQJSGlFKUaBVLyGgWR0Cya7IHkcS5dX2UKGgGaAloD0MICOdTx+qhcECUhpRSlGgVS6poFkdAsmu1bgTAWXV9lChoBmgJaA9DCEMglzjy23NAlIaUUpRoFUvGaBZHQLJruCWeHzp1fZQoaAZoCWgPQwj7O9ujt95yQJSGlFKUaBVLtGgWR0Cya8tPgvUSdX2UKGgGaAloD0MIYRvxZPezckCUhpRSlGgVS4hoFkdAsmveEf1YhnV9lChoBmgJaA9DCP/PYb68XnNAlIaUUpRoFUuxaBZHQLJumhyKekJ1fZQoaAZoCWgPQwjsNNJS+Q9zQJSGlFKUaBVLr2gWR0Cybpyml67edX2UKGgGaAloD0MIZwsIrcduc0CUhpRSlGgVS7BoFkdAsm6hMBZIQXV9lChoBmgJaA9DCGk50ENtcXJAlIaUUpRoFUvGaBZHQLJur9deIEd1fZQoaAZoCWgPQwgaa39nu3RxQJSGlFKUaBVLpWgWR0CybrlKsdT6dX2UKGgGaAloD0MIXwzlRDtxcECUhpRSlGgVS7VoFkdAsm7I078vVXV9lChoBmgJaA9DCF8KD5qd6nFAlIaUUpRoFUvzaBZHQLJu0sANoal1fZQoaAZoCWgPQwgQIhly7I9xQJSGlFKUaBVLx2gWR0CybtYsVclgdX2UKGgGaAloD0MIqoHmcy7ecECUhpRSlGgVS6NoFkdAsm7uNxVAA3V9lChoBmgJaA9DCNfc0f8yRHJAlIaUUpRoFUvOaBZHQLJu8ZOSGJx1fZQoaAZoCWgPQwh2OLpK9wFyQJSGlFKUaBVLrWgWR0CybvM3yZrpdX2UKGgGaAloD0MIkWEVbyQic0CUhpRSlGgVS7loFkdAsm79hkRSP3V9lChoBmgJaA9DCI/Ey9P5JXRAlIaUUpRoFUvQaBZHQLJvA/82rGR1fZQoaAZoCWgPQwhNamgDMNxzQJSGlFKUaBVLzGgWR0CybxIG6f8NdX2UKGgGaAloD0MIUmNCzOXPckCUhpRSlGgVS8RoFkdAsm8fldTo+3V9lChoBmgJaA9DCCbfbHMjm3JAlIaUUpRoFUu1aBZHQLJvJPomoit1fZQoaAZoCWgPQwjvx+2XDzNzQJSGlFKUaBVLo2gWR0Cybyba7EpBdX2UKGgGaAloD0MIhleSPNfXOECUhpRSlGgVS2poFkdAsm8r5mAbynV9lChoBmgJaA9DCFQaMbMPHXJAlIaUUpRoFUujaBZHQLJvLq+8Gs51fZQoaAZoCWgPQwg0gSIWMRxxQJSGlFKUaBVLu2gWR0CybzzvqkdndX2UKGgGaAloD0MIFJUNa6ofcUCUhpRSlGgVS6VoFkdAsm9ETzundnV9lChoBmgJaA9DCJUrvMuFTnRAlIaUUpRoFUvIaBZHQLJvWgZjx1B1fZQoaAZoCWgPQwi1UZ0OpCNxQJSGlFKUaBVLrGgWR0Cyb1oI8hcJdX2UKGgGaAloD0MI2J3uPPGZcECUhpRSlGgVS6toFkdAsm9plQMx5HV9lChoBmgJaA9DCGVR2EURqHBAlIaUUpRoFUu2aBZHQLJvkULDye91fZQoaAZoCWgPQwiuDoC4awhzQJSGlFKUaBVLwmgWR0Cyb5bowEhadX2UKGgGaAloD0MIwCFUqdmXckCUhpRSlGgVS7hoFkdAsm+exA0KqnV9lChoBmgJaA9DCA9EFmmiGHNAlIaUUpRoFUu2aBZHQLJvpWbgCOp1fZQoaAZoCWgPQwgcQSrFTqJyQJSGlFKUaBVLo2gWR0Cyb7Luc+aCdX2UKGgGaAloD0MI2C5tOOwJcUCUhpRSlGgVS6BoFkdAsm/CWnjyWnV9lChoBmgJaA9DCIS9iSF5T3FAlIaUUpRoFUutaBZHQLJvyBcRlH11fZQoaAZoCWgPQwhkA+liUy1yQJSGlFKUaBVLqmgWR0Cyb82VzIV/dX2UKGgGaAloD0MISWjLuVQ9dECUhpRSlGgVS9BoFkdAsm/XGPxQSHV9lChoBmgJaA9DCKbTug0qlHRAlIaUUpRoFUvJaBZHQLJv42Qnx8V1fZQoaAZoCWgPQwj5LM+DO2xzQJSGlFKUaBVLxWgWR0Cyb/2o3rD7dX2UKGgGaAloD0MIxEFClC/dc0CUhpRSlGgVS7xoFkdAsm//VLBbfXV9lChoBmgJaA9DCKTFGcOcHXJAlIaUUpRoFUuqaBZHQLJwA9XtBv91fZQoaAZoCWgPQwi78e7IWJxzQJSGlFKUaBVLv2gWR0CycCFlXiiqdX2UKGgGaAloD0MIFqQZi+aVckCUhpRSlGgVS7FoFkdAsnAkHGCI13V9lChoBmgJaA9DCCklBKuquHFAlIaUUpRoFUuvaBZHQLJwU9Q40dl1fZQoaAZoCWgPQwguAmN9w5xzQJSGlFKUaBVLt2gWR0CycFc1Gb1AdX2UKGgGaAloD0MIajANw8chc0CUhpRSlGgVS7doFkdAsnBkbS7XhHV9lChoBmgJaA9DCJbNHJKapHFAlIaUUpRoFUuzaBZHQLJwZpFkQPJ1fZQoaAZoCWgPQwg+tI8VfBRwQJSGlFKUaBVLmWgWR0CycG14keIVdX2UKGgGaAloD0MIlfCEXn9USUCUhpRSlGgVS3loFkdAsnB/1schknV9lChoBmgJaA9DCCGRtvFne3BAlIaUUpRoFUuyaBZHQLJwifGdZq51fZQoaAZoCWgPQwgz+tFwiqlzQJSGlFKUaBVLwGgWR0CycIzfaYeDdX2UKGgGaAloD0MIfPFFe3zKc0CUhpRSlGgVS9doFkdAsnCXPRiPQ3V9lChoBmgJaA9DCGnFNxQ+23FAlIaUUpRoFUuSaBZHQLJwmcmBvrJ1fZQoaAZoCWgPQwgUyy2txkdyQJSGlFKUaBVLs2gWR0CycJ7blA/tdX2UKGgGaAloD0MIa4DSUKMLckCUhpRSlGgVS8toFkdAsnCpBSk0rXV9lChoBmgJaA9DCBjshm3LVHFAlIaUUpRoFUuWaBZHQLJwtSWJJoV1fZQoaAZoCWgPQwj8471q5YFyQJSGlFKUaBVLvGgWR0CycMjsQd0adX2UKGgGaAloD0MIIO9VKxOFckCUhpRSlGgVS7loFkdAsnDZesxO+XV9lChoBmgJaA9DCKdaC7PQskVAlIaUUpRoFUtkaBZHQLJw7YBNmDl1fZQoaAZoCWgPQwikVS3p6DxwQJSGlFKUaBVLn2gWR0CycPAnUlRhdX2UKGgGaAloD0MIX7cIjHVPcECUhpRSlGgVS6poFkdAsnD5+y7f53V9lChoBmgJaA9DCMRCrWleR3FAlIaUUpRoFUufaBZHQLJw/o60Y0l1fZQoaAZoCWgPQwgVOxqHuhhwQJSGlFKUaBVLsmgWR0CycRDZL7GedX2UKGgGaAloD0MI+wPltr05ckCUhpRSlGgVS6doFkdAsnEjQswta3V9lChoBmgJaA9DCGVyamcYOnJAlIaUUpRoFUuraBZHQLJxNIP9UCJ1fZQoaAZoCWgPQwjPh2cJcl5yQJSGlFKUaBVLm2gWR0CycTlq8DjjdX2UKGgGaAloD0MITODW3Xzrc0CUhpRSlGgVS+JoFkdAsnFNWS2Yv3V9lChoBmgJaA9DCKmgoupXzm9AlIaUUpRoFUu8aBZHQLJxUcPe54J1fZQoaAZoCWgPQwiTOgFNRLlyQJSGlFKUaBVLqWgWR0CycV4A80UHdX2UKGgGaAloD0MIrI2xEx73ckCUhpRSlGgVS8RoFkdAsnFtIGyHEnV9lChoBmgJaA9DCN9OIsK/m3JAlIaUUpRoFUvaaBZHQLJxcjkuHvd1fZQoaAZoCWgPQwjlYaHWdBdyQJSGlFKUaBVLlmgWR0CycYU3bVSXdX2UKGgGaAloD0MIj6hQ3VyYckCUhpRSlGgVS5hoFkdAsnGRyq+8G3V9lChoBmgJaA9DCCRIpdhRn3BAlIaUUpRoFUu6aBZHQLJxk3dKujh1fZQoaAZoCWgPQwhEqFKzx/FzQJSGlFKUaBVL0GgWR0CycZV2q1gIdX2UKGgGaAloD0MIq7GEtTHPcUCUhpRSlGgVS71oFkdAsnG8mLLpzXV9lChoBmgJaA9DCB6oUx7da3NAlIaUUpRoFUuqaBZHQLJxvwOe8PF1fZQoaAZoCWgPQwjRrkLKjwdzQJSGlFKUaBVL0mgWR0CyccU3wTdtdX2UKGgGaAloD0MICKpGr4bicECUhpRSlGgVS71oFkdAsnHkicG1QnV9lChoBmgJaA9DCGN+bmgK2HJAlIaUUpRoFUu0aBZHQLJx7gQHzH11fZQoaAZoCWgPQwi3mJ8bGit0QJSGlFKUaBVLtWgWR0CycfO8TSLJdX2UKGgGaAloD0MIe/mdJjMoR0CUhpRSlGgVS2RoFkdAsnH/L+xW1nV9lChoBmgJaA9DCJ5i1SDMfnFAlIaUUpRoFUvCaBZHQLJyEw1BMSN1fZQoaAZoCWgPQwglIZG2cZhwQJSGlFKUaBVLqmgWR0CychpyQxN7dX2UKGgGaAloD0MI2su201Zjc0CUhpRSlGgVS7NoFkdAsnIsAZKnN3V9lChoBmgJaA9DCNSBrKeWVXRAlIaUUpRoFUvWaBZHQLJyLgmqo611fZQoaAZoCWgPQwjMQGX8u8BxQJSGlFKUaBVLsGgWR0Cycj5d0JWvdX2UKGgGaAloD0MIq3e4HVrxc0CUhpRSlGgVS+NoFkdAsnJKCEpRXXV9lChoBmgJaA9DCNemsb0WvnJAlIaUUpRoFUuwaBZHQLJyTK2a2F51fZQoaAZoCWgPQwi7ZBwjGSpzQJSGlFKUaBVLzGgWR0CycmcgZCOWdX2UKGgGaAloD0MI2SJpN3o1ckCUhpRSlGgVS6hoFkdAsnJtBJI1+HV9lChoBmgJaA9DCEolPKEXnnNAlIaUUpRoFUuraBZHQLJybvA44qB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2444, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.225-1-MANJARO-x86_64-with-glibc2.36 #1 SMP PREEMPT Sat Nov 26 00:40:25 UTC 2022", "Python": "3.9.0", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu117", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f695c6f5160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f695c6f51f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f695c6f5280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f695c6f5310>", "_build": "<function ActorCriticPolicy._build at 0x7f695c6f53a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f695c6f5430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f695c6f54c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f695c6f5550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f695c6f55e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f695c6f5670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f695c6f5700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f695c6f3a80>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVNQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBSMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAALM1N8xamV4kYIhjNkB3hrEwiy4Q5eur+lEsucxcrbO6qNZC6HvXzyZmMKHTFtpie0SHTboydot/xLA8JbS77Y3XC6QUKE6sFPps5a3680dMXjC+lLwECzY7hXwT5xAm2Co6q6Ert5EpqOguLQtUg6AYwiu6UimBu1l4uuIZ6Ssm8FiW2rrAc2ymH5rMmJe/Y+wA0yOEdPCeZez3xGwabz3atFRXsiu12R7/Jsu28oQtrQUGtWCMr//9KN7+bIORFVnciIRrmwbJjxWxPv1UV2GXLPJaEoHW5pPPOlWHmroGjNiWiQLL184p7B/OdcTq4+WdPs8A4XCt4O4Q81nuyhkNKrDAvExZEqZ5JT4vVFdx46nFtVRJlpngrcEuUVRafOp6K08AzatFNxNiQsaF7ZeF5ps8W2mpAmENIsLCDMP9Ny0XPNnPh1p7V4LX9Dfmecl5AeJDQo0uXik270fD/+sULZIaewUb66VQamfza6EqUCrMYjvFdrgUqoh2bEkr2NAejvk1uO4D5Aj8hEAcHzll2ZQRK7rvFJdZHdYkFG0sV3V/VEFMSsWPSm8cnHvfORWiw4muD5SOzLXIch6JdrdRG4+Oj+D5c+BKPp6iayabV9nd8DYWHPkRxFEYL+VEgT7Auac5G2CEnwmnTRoqwIHvIxsvY7hWqocOQ63HK8r5doRcVFoXH8P92+UjyNbqzg9iXoD/vg57uzbGOc5iGJyr2ifmcXle3Auk3k4mRG7WNdvp8fcMKuxAw7crnJ+ZPs+F5r1z9jOSJwSFhwB6YeCGFpuCOA59z9rDdl50jKt426FZ1OemtPVzzHy1IbkI+yZSu3XBWYBPHYH0onOlTMm560ikAG55Xu/Ex7B1q6Mk3OG7EWsHW+IerL8fpSTMM7BYsmsM9Q70J8A/RDTtLe3yMLTIyGIyJDySlg4JclqQ6rJzrmug3ovAkqBEGQHQ498FpIajxSylJBXtcfrbdhHjBrECXPkJ2m44GpGURUH964GlOY9T+3QanKkD32OmaOJTbludzY8xh+nWIXqFomsiy9X5KiMcnm9BGsmZfyetpknvpXH1+OZu9adnAQ21v3TPEgopAtdojz+Bb2Rxu5/2OPK9r1p/MCiHHw/nhpsCEnk0h1Kw+xMPh2v4JDhUiRwxKhWGG8XHiDITZVeKA0DRB1ca1azyG8yIo+rsi+li0NsCJPdHYqfEmMDY98v4J2TWTpHaGWCh4gBeUxHAN2a8CzpJSMzSSJ5rw83y8RnYdIWTjKv8gDjF0Tb+5y2E3dKwtGCrq83baH8BfKzVrpTRJ8xTe1viTpeAJsSrFLbUP8jU+KsOrGWauItqMypPogYJYUqv7CljnZL4BoY3HWxz1ecKGnFCOzzaST6GfnSxBVYtANlgaqxspU52S65RX3VfohafpsW5yp6y9+iYqge0HYpVfVmuXWAxn10QM8GtWRxiqCfxH8OR6Q+q8g3zoHWe3UmWdHwGnJhuEOWMHMpobSAXTftFF+FWMDAvzxLLZ+sUNAub/uF11H2g28XoxL7uitJa4YlYn9btKDSjAaoVV1cjNtlEUS9XE0lm2QqcCro7L8aSS5MzvdveC7X3GozJ7tmARulamIHrjrdmyJoTd8QBIx6U7+/Aav0OOpF9sJuZghP00Z3c+NTwb5J4TyjgXPWTX28i3eisiLcSTorXQAYS3HHafj6JMBMpAksgKCTsUFOJymaNIXF4H636GCRt9Twl1ti7sXFJr9tVavhDIljxPWHYJw17HxnSM7Zb6Ktf9yUZ+KDlSW2OmK8CdxNtdIxFHPdqRHoe4NUQhkD7b01gnQFW6YjRusks0vCywOWA4RcSvkcHlNj+hL3bd+v+dFx03jhmZiqp8sCxZf7pu13USl8dYzINQDA4UG5OhU9iY9pzqojcwMeM4Kvrwrd5zGm9MSgjqrGmG6Q/Mu6gwlfbH6HWuTLuEyMlMvkaqiewnl/+8NnwB2k/8dDDKEvw1+g9Fk9gc96FJrVTgrNA+339cZ1Adi+6wgBy2lodX2HR7/I3spOgHnrTsvSVYzOVHo/4v56K4KQN5GR7piuC0B7O6mHJScm7P9vSTOgRqMWHeBJEUdFbH443QMOXBFEl54Xw1wlnPDxiPRmPzm5Z2gv9SsJKd5suhJldOv5tOOYjbSk/NxY/u+ADWoG8wg0KxKB96JlQGcVbp+cbcDMJGRMjw9KqojE5d4ajSb9DYjJqoUAANgTnZt34uDmirY+YeCAw5p/zitdTPIZcO+bd34QTveh2d/rMJFSzPz1q/87OEf49L4L3IboPw/RdhRz0NNtNpLeYaeU0gZ/92qcuS4JGaNMDZST6ciAuMQ/81guBDfwpGnxzZfIXwxHbV6IkN3h7gQ47dS/q6bZc3tN+LMKpajiGZQS6Io/N3l/RNqL93QtUIChc6TnN7ynVbo7MIkg9AwZFfGXAaGDn12SQDgqdxrqnJVTdCzZCDbcT+ly4xklYx/pC9Qk8saimJ6dOLdrCqjsFUFJZxaTU/F90xb4MXBmR69rumBfPZXoJrJBIbRFTlBiizHUR00EE8JUg9HNGzLzAq0lw8G0WzUloAwwwtkbEHv5UoX8gJwDDFR69kRiAsu3dglj4ks5Usv76AEo/6yI4BfWkO70iv7cBtd/kPDXEzGEJJSfJRu+3vG/cIZMu5Gsa1qojx7siC10eM51qg25MSRqAOBV1pLEFszKNhpqby0GzpLjnSOjCiUN4qQfKg31K4cS4SRZIYFQACm5F/tFtBlK0Df3dTa8Kb96O05Xx/SrhHT7k4NFI5EcU45x55peydUtOKpd7gA7YK6pzEftfNAPv7C2KPji+ERAYy8SgwcoDtXl8zncz9UHNs2+iwmfBXLcB0jUz6xjOlDIC9OiG6ZV5uqi9p2I1EublJ2m9aRIm6FZGdZ8mnDlnrdI78PvGUxfZzVbOOLAKvS6ScG71YQl/NR6YMfXGx0J623BYzBUIYulc/b4XlRt3F1WSJC8uANEhBm0FPDn13wJ//vTBSnNJT32ixPZOVrnmPVwSUF3SkjEu9yz2I9ddlhZbPECajXnw9wHMDbHrwoAH84KbL2CxbveGXq10pJq/1YKbFn4VJZ94vXhrZHgmPAC71b4d7KaCwQzsxDmSFZA3/KPwJQUJ3bT/bMu00tz7MZyQZMM0thzOSHCroCHgkOLoVXly0opjll5I7PI+73Lxxhvq2NFakuwbNlGnupMo4SFNRBcFzRHbkPyrHnGpVSCbVhzu9EWtVXEnd3z0Njn2mXK0GoSDlv3uxpPsQJvYzEbCNqZiq4ExefLNfezS/IVSh5LUjz+iCr9/YlGgKjAJ1NJSJiIeUUpQoSwNoDk5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNAAF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 15007744, "_total_timesteps": 15000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671039213424963915, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3HmzzXf2u7VfiBvmHthL7Y77K918wDPwAAgD8AAAAAAGC5uyTqDzyah0c+16x5vlyTAz6CiRu+AAAAAAAAgD9ztJ6+ThZGPzi8ez4Okl+/eCwMv6YzuT4AAAAAAAAAABpDQ74o9ZA/7d7LvsXFFL+FQP2+m6x8vgAAAAAAAAAA07J7vjLcXz92N56+OtfpvoT/Ab/KE2W+AAAAAAAAAABmgS29KYRcuhuTnjqVh5Y1ECsCOxSzurkAAIA/AACAP5rehLyu6mg/sDCBvVQfir8H8bm8kYQFvQAAAAAAAAAAzTRovOyxyLk192qzoQExL0GtDTt+FLkzAACAPwAAgD+aT9e8FEizuhYSmTbGgpsxWbq7OcWbs7UAAIA/AACAP5NqHr7kmAM/tcK8PW6OQb/bj6u+gV1JPgAAAAAAAAAAmnmzuvW3Dz949fY8nBZnv/O1Kru7qoM9AAAAAAAAAABmIlU8j3IuupiBVrov5+Q01nYNu+XCeTkAAIA/AACAP41+wj1ajK0+09VlvvrNKL/zLNA9NaVivgAAAAAAAAAAM4r+PAd4Nj6SovK8vJYTvwkNlD3+Qai8AAAAAAAAAABtqCK+r1YrP/a3nz2mHFG/EfjLviWKLj4AAAAAAAAAAIC5Sr1xvjs8KvW3PlNGcL5S7GQ+E70+vwAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0005162666666667093, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILh9JSQ9fb0CUhpRSlIwBbJRLmYwBdJRHQPEZljYao/B1fZQoaAZoCWgPQwgiNIKNayRzQJSGlFKUaBVLlmgWR0DxGZZ33HrAdX2UKGgGaAloD0MIjsh3KTX6ckCUhpRSlGgVS5loFkdA8RmX0QK8c3V9lChoBmgJaA9DCP6arFGPGW9AlIaUUpRoFUuYaBZHQPEZmApWmxd1fZQoaAZoCWgPQwixFwrYDiNyQJSGlFKUaBVLnGgWR0DxGZgzj3mFdX2UKGgGaAloD0MIIjfDDTjPckCUhpRSlGgVS7hoFkdA8RmYUxmCiHV9lChoBmgJaA9DCPnbniAx+XNAlIaUUpRoFUvKaBZHQPEZm093bEh1fZQoaAZoCWgPQwhUyQBQBfNyQJSGlFKUaBVLuWgWR0DxGZtQHAymdX2UKGgGaAloD0MIHhoWo24Sc0CUhpRSlGgVS71oFkdA8RnGMpCrtHV9lChoBmgJaA9DCBKlvcGXpXJAlIaUUpRoFUunaBZHQPEZyMBKcut1fZQoaAZoCWgPQwh1kq0uZ1NyQJSGlFKUaBVLrWgWR0DxGckslb/wdX2UKGgGaAloD0MI8zl3u56Dc0CUhpRSlGgVS6doFkdA8RnJlRP423V9lChoBmgJaA9DCMyZ7Qr9xHJAlIaUUpRoFUuiaBZHQPEZyzDJlrd1fZQoaAZoCWgPQwiqCg3EsshvQJSGlFKUaBVLiWgWR0DxGcunUlRhdX2UKGgGaAloD0MIGvm84ukscUCUhpRSlGgVS6BoFkdA8RnLwb+98XV9lChoBmgJaA9DCD6UaMmj2XBAlIaUUpRoFUumaBZHQPEZy+QlruZ1fZQoaAZoCWgPQwhxcr9DkQtwQJSGlFKUaBVLj2gWR0DxGcxWNFSbdX2UKGgGaAloD0MI0o4bfncTc0CUhpRSlGgVS9NoFkdA8RnNV5OafHV9lChoBmgJaA9DCKK4402+rnFAlIaUUpRoFUujaBZHQPEZzYVsUIt1fZQoaAZoCWgPQwgOg/kr5KZyQJSGlFKUaBVLyWgWR0DxGdBC/XXidX2UKGgGaAloD0MI7WZGP9pQc0CUhpRSlGgVTZYBaBZHQPEZ0NVGTcJ1fZQoaAZoCWgPQwi/8iA9RSdyQJSGlFKUaBVLqWgWR0DxGdEz19ORdX2UKGgGaAloD0MIC0eQSnHrckCUhpRSlGgVS7FoFkdA8RnR3k92YHV9lChoBmgJaA9DCKjjMQMVpXFAlIaUUpRoFUuQaBZHQPEZ0knAqNJ1fZQoaAZoCWgPQwgfFJSilTR0QJSGlFKUaBVLymgWR0DxGdNEzO5bdX2UKGgGaAloD0MItk3xuGjZcECUhpRSlGgVS6hoFkdA8RnUJy+6AnV9lChoBmgJaA9DCJd0lIPZanNAlIaUUpRoFUvAaBZHQPEZ1ie4Cp51fZQoaAZoCWgPQwhKQEzCRTxzQJSGlFKUaBVLlmgWR0DxGdZEX+ERdX2UKGgGaAloD0MIe0rOiX1jckCUhpRSlGgVS6JoFkdA8RnWX6Eal3V9lChoBmgJaA9DCMkh4ubU5XFAlIaUUpRoFUufaBZHQPEZ1lWU8mt1fZQoaAZoCWgPQwg4ukp3l19yQJSGlFKUaBVLsWgWR0DxGdbR2KVIdX2UKGgGaAloD0MIdsB1xYwfcECUhpRSlGgVS7NoFkdA8RnXZSWJJ3V9lChoBmgJaA9DCEhrDDrhEHRAlIaUUpRoFUu4aBZHQPEZ2Z9PUKB1fZQoaAZoCWgPQwgKKxVU1BxzQJSGlFKUaBVLxWgWR0DxGdpbEP1+dX2UKGgGaAloD0MILSeh9AVWc0CUhpRSlGgVS5hoFkdA8RnbTcAR03V9lChoBmgJaA9DCM0d/S/XeHJAlIaUUpRoFUuqaBZHQPEZ24kgOjJ1fZQoaAZoCWgPQwgj9DP1umxzQJSGlFKUaBVLrWgWR0DxGdxjFyaNdX2UKGgGaAloD0MIQ1n4+lpYcUCUhpRSlGgVS6doFkdA8Rnc94A0bnV9lChoBmgJaA9DCM3OonfqDHNAlIaUUpRoFUutaBZHQPEZ3cvnKW91fZQoaAZoCWgPQwj4+lqXmmdyQJSGlFKUaBVLnWgWR0DxGd3gbIcSdX2UKGgGaAloD0MIFvpgGVtrcECUhpRSlGgVS5doFkdA8RneRGhEjXV9lChoBmgJaA9DCOaRPxg4unBAlIaUUpRoFUuTaBZHQPEZ4AHgP3B1fZQoaAZoCWgPQwjQC3cujNxyQJSGlFKUaBVLm2gWR0DxGeBtu1nedX2UKGgGaAloD0MIh8Q9lj6EckCUhpRSlGgVS6NoFkdA8Rngv779AHV9lChoBmgJaA9DCD4g0Jm0gXFAlIaUUpRoFUuvaBZHQPEZ4bWsijd1fZQoaAZoCWgPQwgVysLXl+5yQJSGlFKUaBVLrmgWR0DxGeIhA4XGdX2UKGgGaAloD0MIvQFmvkO1ckCUhpRSlGgVS7FoFkdA8Rni/o3aSXV9lChoBmgJaA9DCLR224UmRnNAlIaUUpRoFUuhaBZHQPEZ5P6k6911fZQoaAZoCWgPQwhwC5bqAn5xQJSGlFKUaBVLrGgWR0DxGeUTzd1udX2UKGgGaAloD0MItqLNcS5ecECUhpRSlGgVS5RoFkdA8RnlI86mwnV9lChoBmgJaA9DCGnDYWlg/WVAlIaUUpRoFU3oA2gWR0DxGeXpUgjhdX2UKGgGaAloD0MICw3Estmac0CUhpRSlGgVS6RoFkdA8RnmfWcz7HV9lChoBmgJaA9DCAJjfQOTqXJAlIaUUpRoFUusaBZHQPEZ51tgrpd1fZQoaAZoCWgPQwhz9Pi9TbhvQJSGlFKUaBVLlmgWR0DxGedpfx+bdX2UKGgGaAloD0MIBOj3/VtYcUCUhpRSlGgVS51oFkdA8Rnnxbr1NHV9lChoBmgJaA9DCPPGSWEe1XFAlIaUUpRoFUu0aBZHQPEZ6HuLJjl1fZQoaAZoCWgPQwiNf59xIXByQJSGlFKUaBVLrWgWR0DxGej92ovSdX2UKGgGaAloD0MIUUzeADPdc0CUhpRSlGgVS61oFkdA8RnqltGd7XV9lChoBmgJaA9DCCb9vRQeAnBAlIaUUpRoFUuoaBZHQPEZ6rgzguR1fZQoaAZoCWgPQwgofSHkPGFzQJSGlFKUaBVLmWgWR0DxGer779AHdX2UKGgGaAloD0MIi/okd9h/cECUhpRSlGgVS5ZoFkdA8RnrVWCEpXV9lChoBmgJaA9DCLH7juGxYnFAlIaUUpRoFUubaBZHQPEZ7CocaOx1fZQoaAZoCWgPQwj9bOS66bpzQJSGlFKUaBVLvmgWR0DxGexKsdT6dX2UKGgGaAloD0MIeVp+4OqjckCUhpRSlGgVS55oFkdA8RntuHFglXV9lChoBmgJaA9DCCHKF7RQ+nBAlIaUUpRoFUumaBZHQPEZ7jKB/Zx1fZQoaAZoCWgPQwjQJRx6C3ZzQJSGlFKUaBVLsmgWR0DxGe7qQzUJdX2UKGgGaAloD0MIJoqQul1ickCUhpRSlGgVS6hoFkdA8RnvFb3XZ3V9lChoBmgJaA9DCASSsG8nVHFAlIaUUpRoFUulaBZHQPEZ70pRXOp1fZQoaAZoCWgPQwjHZHH/UZ9yQJSGlFKUaBVLq2gWR0DxGfC+3H7xdX2UKGgGaAloD0MIeo8zTdi4cUCUhpRSlGgVS6xoFkdA8RnxGCdz4nV9lChoBmgJaA9DCDYBhuWPsXNAlIaUUpRoFUu2aBZHQPEZ8UGu9vl1fZQoaAZoCWgPQwh3vp8ab8BwQJSGlFKUaBVLh2gWR0DxGfJ/iYLLdX2UKGgGaAloD0MI4etrXWqpc0CUhpRSlGgVS8NoFkdA8Rny+GKyfXV9lChoBmgJaA9DCMk7hzIUWnNAlIaUUpRoFUu3aBZHQPEZ8vvYvnN1fZQoaAZoCWgPQwg9uhEWFQtxQJSGlFKUaBVLoWgWR0DxGfNDBuXNdX2UKGgGaAloD0MIY9F0dnJhcECUhpRSlGgVS5ZoFkdA8Rn0SKBNEnV9lChoBmgJaA9DCBb3H5mOpXRAlIaUUpRoFUvLaBZHQPEZ9bUaybB1fZQoaAZoCWgPQwhQ/YNIRvhxQJSGlFKUaBVLzGgWR0DxGfX+OwPidX2UKGgGaAloD0MIzm4tk2FBdECUhpRSlGgVS8BoFkdA8Rn2agElmnV9lChoBmgJaA9DCDiGAODYqG5AlIaUUpRoFUukaBZHQPEZ9pId2gZ1fZQoaAZoCWgPQwim7V9ZKdZwQJSGlFKUaBVLlGgWR0DxGfcma6SUdX2UKGgGaAloD0MIL4uJzcf1cUCUhpRSlGgVS5toFkdA8Rn3UfDDTHV9lChoBmgJaA9DCOkOYmdKj3NAlIaUUpRoFUuwaBZHQPEZ98wvg3t1fZQoaAZoCWgPQwhsPxnjg6dzQJSGlFKUaBVLtmgWR0DxGfkuQp4KdX2UKGgGaAloD0MIxuBh2nfTcECUhpRSlGgVS6VoFkdA8Rn6XctXgnV9lChoBmgJaA9DCLSOqiaIwHNAlIaUUpRoFUuwaBZHQPEZ+nGACnx1fZQoaAZoCWgPQwiWr8vwn5pxQJSGlFKUaBVLoWgWR0DxGftS1Vo6dX2UKGgGaAloD0MIFCF1Ozuhc0CUhpRSlGgVS7xoFkdA8Rn7aioKlnV9lChoBmgJaA9DCMkDkUUadHBAlIaUUpRoFUuzaBZHQPEZ/M274BV1fZQoaAZoCWgPQwia0Y+GUyJzQJSGlFKUaBVLvWgWR0DxGf1Zpi7TdX2UKGgGaAloD0MIYwlrY6wLdECUhpRSlGgVS79oFkdA8Rn96FVT73V9lChoBmgJaA9DCDc2O1L9vm9AlIaUUpRoFUudaBZHQPEZ/ngpBop1fZQoaAZoCWgPQwiSkbOwp9RzQJSGlFKUaBVLxmgWR0DxGf9No8ISdX2UKGgGaAloD0MI28NeKCBZc0CUhpRSlGgVS59oFkdA8Rn/aIacZ3V9lChoBmgJaA9DCNWRI51B3nBAlIaUUpRoFUubaBZHQPEZ/9jEvTR1fZQoaAZoCWgPQwhZNnNIajVyQJSGlFKUaBVLrmgWR0DxGgBMUAT7dX2UKGgGaAloD0MIXKyowXRzcUCUhpRSlGgVS6toFkdA8RoBcfA9FHV9lChoBmgJaA9DCFNb6iBv13NAlIaUUpRoFUvNaBZHQPEaAXK1XvJ1fZQoaAZoCWgPQwgkfsUabrdzQJSGlFKUaBVLu2gWR0DxGgG+De0pdX2UKGgGaAloD0MIjnbc8DtCb0CUhpRSlGgVS6JoFkdA8RoCKjBVMnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3664, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.225-1-MANJARO-x86_64-with-glibc2.36 #1 SMP PREEMPT Sat Nov 26 00:40:25 UTC 2022", "Python": "3.9.0", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu117", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 291.5186200508873, "std_reward": 11.945566828364788, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-15T10:43:27.001920"}
|