LunarLander / config.json
ruzarx's picture
Test_from_local
a30dd5d
raw
history blame
14.5 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9e017f41f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9e017f4280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9e017f4310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9e017f43a0>", "_build": "<function ActorCriticPolicy._build at 0x7f9e017f4430>", "forward": "<function ActorCriticPolicy.forward at 0x7f9e017f44c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9e017f4550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9e017f45e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9e017f4670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9e017f4700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9e017f4790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9e017f5480>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670577263626651242, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAC887sQMrM/9La9vi4ag755MNw7ZFhBPQAAAAAAAAAA7fENvrIkMT40hY0+fvSNvlmBaT0KLYQ7AAAAAAAAAACaj149ar9HPlZ3lb0GX5S+gEzHvT5Pg7wAAAAAAAAAAM2cqjoWgbU/k/yHPPGtub4+bzM9h6jJvAAAAAAAAAAAALqJvM+6FbyEL4o8NUFwPVDbP7xNNxY8AACAPwAAgD9AT/89oo2LP8qV4D7u7RS/gwhaPqhKpD4AAAAAAAAAADPdqLy25R68N79AOUMTkjwAgYq9a/dxPQAAgD8AAIA/TWM7vcdCMD7UYDw+hXuTvl3LOT4CePy9AAAAAAAAAAAaEiA9fv2ePQpNgb23r5q+LXWhvdoitLwAAAAAAAAAADNjYjs0Doc/K3PzOLwwyL6dyX49DpUBvQAAAAAAAAAAZtebvQPAQD2bd5C8MDXYvhQV4r7j/Wk+AAAAAAAAAAAzi5i9O1eVvOBoXD3SkeC9bissPGKAqD4AAIA/AACAP80j2LyPmgm6+zNIs/lfbC/LLbk7MT24MwAAgD8AAIA/DdGoPfU5rT8K/7A+UxHLvt6zOT4Wi3s+AAAAAAAAAAAAsII6zUqzP0DLzj32Gui+coqWuh1eu7wAAAAAAAAAAM1gXD3K2X4+erqrvUE7j74yv5U8igL8vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZB75g0HecUCUhpRSlIwBbJRNBwGMAXSUR0CZC5WSU1Q7dX2UKGgGaAloD0MIMEymCoYfckCUhpRSlGgVS9BoFkdAmQ2mdupCKXV9lChoBmgJaA9DCFJlGHdDJHJAlIaUUpRoFU0nAWgWR0CZDnNFjNILdX2UKGgGaAloD0MIDFcHQNxbcECUhpRSlGgVS/ZoFkdAmQ6jXjENv3V9lChoBmgJaA9DCFtgj4mU03BAlIaUUpRoFUvWaBZHQJkOx4A0bcZ1fZQoaAZoCWgPQwg26iEaHYpxQJSGlFKUaBVL5WgWR0CZDxUX531SdX2UKGgGaAloD0MIu/HuyBj/cUCUhpRSlGgVTQsBaBZHQJkPR/qgRK91fZQoaAZoCWgPQwjudr00xeVvQJSGlFKUaBVNCwFoFkdAmQ9eKfnOjnV9lChoBmgJaA9DCESJljyedm5AlIaUUpRoFUv9aBZHQJkPYgbIcR11fZQoaAZoCWgPQwirevmd5oFwQJSGlFKUaBVNCgFoFkdAmQ9r0aqCH3V9lChoBmgJaA9DCFeTp6xml3BAlIaUUpRoFU0HAWgWR0CZD3XbdrO8dX2UKGgGaAloD0MIzVt1HSomckCUhpRSlGgVTQIBaBZHQJkPiGdqcmV1fZQoaAZoCWgPQwivfQG9sFtyQJSGlFKUaBVL9WgWR0CZEDQla8pTdX2UKGgGaAloD0MIEeFfBI0nc0CUhpRSlGgVTQIBaBZHQJkQO0Re1KJ1fZQoaAZoCWgPQwimKJfG76twQJSGlFKUaBVNDQFoFkdAmRBMbm2b5XV9lChoBmgJaA9DCF2/YDes13BAlIaUUpRoFU0LAWgWR0CZEG/R3NcGdX2UKGgGaAloD0MIv2A3bFv+U0CUhpRSlGgVS5doFkdAmRDN+b3GoHV9lChoBmgJaA9DCLA8SE9R0XFAlIaUUpRoFU0IAWgWR0CZEO7uUliSdX2UKGgGaAloD0MI9G+X/TpwckCUhpRSlGgVS/hoFkdAmRN7o0Q9R3V9lChoBmgJaA9DCLJl+bqM2G9AlIaUUpRoFUv4aBZHQJkTqx6fJ3h1fZQoaAZoCWgPQwiismFNZXdxQJSGlFKUaBVL5mgWR0CZE9x9oexOdX2UKGgGaAloD0MIgv+tZIeBcUCUhpRSlGgVS/BoFkdAmRPuE7GNrHV9lChoBmgJaA9DCFGFP8NbW3BAlIaUUpRoFUvoaBZHQJkUD+85CF91fZQoaAZoCWgPQwi8sgsG1+NwQJSGlFKUaBVL7WgWR0CZFFplz2eydX2UKGgGaAloD0MII6DCEWS+c0CUhpRSlGgVS/9oFkdAmRSJNTLntHV9lChoBmgJaA9DCFwFMdB1W3JAlIaUUpRoFU0KAWgWR0CZFM/9pAUtdX2UKGgGaAloD0MIe75muazlcECUhpRSlGgVTSgBaBZHQJkU7ijtXxR1fZQoaAZoCWgPQwhuUWaDzC9yQJSGlFKUaBVNDgFoFkdAmRT4kJKJ23V9lChoBmgJaA9DCFdAoZ4+7G9AlIaUUpRoFUv3aBZHQJkVZiCrcTJ1fZQoaAZoCWgPQwhuhbAay/1xQJSGlFKUaBVNBQFoFkdAmRWpg5R0l3V9lChoBmgJaA9DCHdJnBVRpm9AlIaUUpRoFU0FAWgWR0CZFcIdU83ddX2UKGgGaAloD0MIf93pzhODbkCUhpRSlGgVTQMBaBZHQJkV2+Yc/+t1fZQoaAZoCWgPQwiQ2Vn0ToVxQJSGlFKUaBVL8GgWR0CZFfujh1kldX2UKGgGaAloD0MIPrMkQM2/cUCUhpRSlGgVS/1oFkdAmRZImgJ1JXV9lChoBmgJaA9DCH+l8+FZOjRAlIaUUpRoFUuXaBZHQJkX3WI42jx1fZQoaAZoCWgPQwhBu0OKQbVxQJSGlFKUaBVL3mgWR0CZGBU70WdmdX2UKGgGaAloD0MIo1huaTWZcECUhpRSlGgVS+doFkdAmTm/a+N96XV9lChoBmgJaA9DCII65dFNm3FAlIaUUpRoFUvkaBZHQJk52l0o0AN1fZQoaAZoCWgPQwggfv57cDxxQJSGlFKUaBVL9mgWR0CZOsVXV9WqdX2UKGgGaAloD0MIPiMRGoHLcECUhpRSlGgVS/xoFkdAmTsqOT7l73V9lChoBmgJaA9DCAlwehcv1XBAlIaUUpRoFU0XAWgWR0CZOy+YtxuLdX2UKGgGaAloD0MI1ZY6yOuScUCUhpRSlGgVS/5oFkdAmTuhyCFsYXV9lChoBmgJaA9DCM9IhEYwWnFAlIaUUpRoFUvcaBZHQJk8G15Sm651fZQoaAZoCWgPQwiNs+kI4BtvQJSGlFKUaBVL+mgWR0CZPHJT2nKodX2UKGgGaAloD0MI7nppioBMcUCUhpRSlGgVS+5oFkdAmTxxjSXt0HV9lChoBmgJaA9DCFD7rZ3oTHFAlIaUUpRoFUv+aBZHQJk8pBrvb491fZQoaAZoCWgPQwhqiZXRCPNxQJSGlFKUaBVNFQFoFkdAmTy8/IKc/nV9lChoBmgJaA9DCDJ2wkuwonFAlIaUUpRoFU09AWgWR0CZPPWmP5pKdX2UKGgGaAloD0MIJGO1+X9/SUCUhpRSlGgVS7doFkdAmT1uLzf78HV9lChoBmgJaA9DCN2VXTA4yXBAlIaUUpRoFU0PAWgWR0CZPY5tWMjvdX2UKGgGaAloD0MIDvW7sDWnP0CUhpRSlGgVS7VoFkdAmT7EsOG0u3V9lChoBmgJaA9DCN/eNehLknBAlIaUUpRoFU0IAWgWR0CZP2HwgDA8dX2UKGgGaAloD0MI/b0UHrRIcUCUhpRSlGgVTQQBaBZHQJk/pnrY5DJ1fZQoaAZoCWgPQwhxVkRN9CtwQJSGlFKUaBVNFAFoFkdAmUAe8XenAXV9lChoBmgJaA9DCHN/9bhvj3BAlIaUUpRoFUvqaBZHQJlAY6r/82t1fZQoaAZoCWgPQwgy5UNQtQpvQJSGlFKUaBVL7GgWR0CZQHLIxQBQdX2UKGgGaAloD0MI/rj98gl6cUCUhpRSlGgVS9VoFkdAmUFE/fO2RnV9lChoBmgJaA9DCD874LriE3JAlIaUUpRoFUvUaBZHQJlBXJRwZO11fZQoaAZoCWgPQwgz/RLx1iNtQJSGlFKUaBVNDgFoFkdAmUITAN5MUXV9lChoBmgJaA9DCN/gC5NpOHJAlIaUUpRoFU0JAWgWR0CZQj6OYIBzdX2UKGgGaAloD0MIqifzj/5WcUCUhpRSlGgVS99oFkdAmUJ0nogV5HV9lChoBmgJaA9DCMMpc/NNUnFAlIaUUpRoFU0RAWgWR0CZQnBMSK3vdX2UKGgGaAloD0MI1ouhnOiVckCUhpRSlGgVTQEBaBZHQJlCoN3GGVR1fZQoaAZoCWgPQwgmGTkL+7BwQJSGlFKUaBVNGgFoFkdAmUQHE2pAEHV9lChoBmgJaA9DCPXyO00mRnFAlIaUUpRoFUvvaBZHQJlFWCpWFOB1fZQoaAZoCWgPQwg17WKaaXtwQJSGlFKUaBVL22gWR0CZRVdszl90dX2UKGgGaAloD0MIEFmkifemb0CUhpRSlGgVTQUBaBZHQJlFlY+0PYp1fZQoaAZoCWgPQwgEdcqjG2VPQJSGlFKUaBVLsmgWR0CZRa3zMA3ldX2UKGgGaAloD0MI9RPObi2cb0CUhpRSlGgVS+RoFkdAmUXjmGM4tHV9lChoBmgJaA9DCGeAC7Jl13BAlIaUUpRoFUvraBZHQJlF/MfRu0l1fZQoaAZoCWgPQwjSxhFrcR5xQJSGlFKUaBVNLgFoFkdAmUX6Vlf7anV9lChoBmgJaA9DCLpL4qwIy3JAlIaUUpRoFU0AAmgWR0CZR2Z5AyEddX2UKGgGaAloD0MICcIVUGj6cECUhpRSlGgVTRQBaBZHQJlH1N5+pfh1fZQoaAZoCWgPQwh551CGKohwQJSGlFKUaBVL+mgWR0CZSAguAZsLdX2UKGgGaAloD0MInnx6bMtgcUCUhpRSlGgVS/doFkdAmUgh1cMVlHV9lChoBmgJaA9DCG+6ZYc4DHJAlIaUUpRoFUvzaBZHQJlIdK6Fuel1fZQoaAZoCWgPQwh2U8pr5bpwQJSGlFKUaBVNDgFoFkdAmUjPOUt7KXV9lChoBmgJaA9DCL7Z5sb0YG5AlIaUUpRoFU0PAWgWR0CZSNncclw+dX2UKGgGaAloD0MIwLSoT/JsckCUhpRSlGgVS/9oFkdAmUnuscQyynV9lChoBmgJaA9DCMpt+x51eW9AlIaUUpRoFUvjaBZHQJlK2EK3NLV1fZQoaAZoCWgPQwiAnZs2oxRwQJSGlFKUaBVL7mgWR0CZSwgfEGaAdX2UKGgGaAloD0MIjs75KQ6wcUCUhpRSlGgVTQwBaBZHQJlLixGDtgN1fZQoaAZoCWgPQwjDRe7pKrdxQJSGlFKUaBVL92gWR0CZS7XdTHbRdX2UKGgGaAloD0MIURToE/kXcUCUhpRSlGgVS/xoFkdAmUvXI6r/83V9lChoBmgJaA9DCLTk8bT8CmNAlIaUUpRoFU3oA2gWR0CZS/xZMcp9dX2UKGgGaAloD0MITgmISTgdcUCUhpRSlGgVTSIBaBZHQJlMHfIjnmt1fZQoaAZoCWgPQwiwBFJiFyJzQJSGlFKUaBVNKAFoFkdAmUystwrDqHV9lChoBmgJaA9DCGAGY0RifXFAlIaUUpRoFUvhaBZHQJlM9dxAB1d1fZQoaAZoCWgPQwithVloZ0FyQJSGlFKUaBVL+GgWR0CZTZ7dznzQdX2UKGgGaAloD0MIZ3+g3LagcECUhpRSlGgVS/VoFkdAmU2ocaOxS3V9lChoBmgJaA9DCHsQAvKlgG1AlIaUUpRoFUvxaBZHQJlN3sniNsF1fZQoaAZoCWgPQwgQyvs4WrJwQJSGlFKUaBVNIgFoFkdAmU3xXnyNGXV9lChoBmgJaA9DCLn+XZ85aXBAlIaUUpRoFUvwaBZHQJlOK8xsVL11fZQoaAZoCWgPQwj1ona/illuQJSGlFKUaBVL9GgWR0CZTkfKZDzAdX2UKGgGaAloD0MI5ulcUcrkcECUhpRSlGgVTRgBaBZHQJlQHcrRSgp1fZQoaAZoCWgPQwh/37958VdxQJSGlFKUaBVL+GgWR0CZUG3Zf2K3dX2UKGgGaAloD0MIcy8wK5QZb0CUhpRSlGgVS+loFkdAmVCMfvF3p3V9lChoBmgJaA9DCOlkqfX+Im9AlIaUUpRoFU0GAWgWR0CZUJXMhX8wdX2UKGgGaAloD0MIJ9vAHegdckCUhpRSlGgVS+loFkdAmVEUZJkGzXV9lChoBmgJaA9DCO4FZoWiym1AlIaUUpRoFUv6aBZHQJlRGFdszl91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 324, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.225-1-MANJARO-x86_64-with-glibc2.36 #1 SMP PREEMPT Sat Nov 26 00:40:25 UTC 2022", "Python": "3.9.0", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}