ruzarx commited on
Commit
a30dd5d
·
1 Parent(s): 63e192f

Test_from_local

Browse files
LunarLander3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f96bb43a6d140710cfa3f7ac7c9673dc7c317f8c71667f9cce7dddf9ef648111
3
+ size 147420
LunarLander3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
LunarLander3/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9e017f41f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9e017f4280>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9e017f4310>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9e017f43a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9e017f4430>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9e017f44c0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9e017f4550>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9e017f45e0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9e017f4670>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9e017f4700>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9e017f4790>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc._abc_data object at 0x7f9e017f5480>"
20
+ },
21
+ "verbose": 0,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000.0,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670577263626651242,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAC887sQMrM/9La9vi4ag755MNw7ZFhBPQAAAAAAAAAA7fENvrIkMT40hY0+fvSNvlmBaT0KLYQ7AAAAAAAAAACaj149ar9HPlZ3lb0GX5S+gEzHvT5Pg7wAAAAAAAAAAM2cqjoWgbU/k/yHPPGtub4+bzM9h6jJvAAAAAAAAAAAALqJvM+6FbyEL4o8NUFwPVDbP7xNNxY8AACAPwAAgD9AT/89oo2LP8qV4D7u7RS/gwhaPqhKpD4AAAAAAAAAADPdqLy25R68N79AOUMTkjwAgYq9a/dxPQAAgD8AAIA/TWM7vcdCMD7UYDw+hXuTvl3LOT4CePy9AAAAAAAAAAAaEiA9fv2ePQpNgb23r5q+LXWhvdoitLwAAAAAAAAAADNjYjs0Doc/K3PzOLwwyL6dyX49DpUBvQAAAAAAAAAAZtebvQPAQD2bd5C8MDXYvhQV4r7j/Wk+AAAAAAAAAAAzi5i9O1eVvOBoXD3SkeC9bissPGKAqD4AAIA/AACAP80j2LyPmgm6+zNIs/lfbC/LLbk7MT24MwAAgD8AAIA/DdGoPfU5rT8K/7A+UxHLvt6zOT4Wi3s+AAAAAAAAAAAAsII6zUqzP0DLzj32Gui+coqWuh1eu7wAAAAAAAAAAM1gXD3K2X4+erqrvUE7j74yv5U8igL8vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVRxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZB75g0HecUCUhpRSlIwBbJRNBwGMAXSUR0CZC5WSU1Q7dX2UKGgGaAloD0MIMEymCoYfckCUhpRSlGgVS9BoFkdAmQ2mdupCKXV9lChoBmgJaA9DCFJlGHdDJHJAlIaUUpRoFU0nAWgWR0CZDnNFjNILdX2UKGgGaAloD0MIDFcHQNxbcECUhpRSlGgVS/ZoFkdAmQ6jXjENv3V9lChoBmgJaA9DCFtgj4mU03BAlIaUUpRoFUvWaBZHQJkOx4A0bcZ1fZQoaAZoCWgPQwg26iEaHYpxQJSGlFKUaBVL5WgWR0CZDxUX531SdX2UKGgGaAloD0MIu/HuyBj/cUCUhpRSlGgVTQsBaBZHQJkPR/qgRK91fZQoaAZoCWgPQwjudr00xeVvQJSGlFKUaBVNCwFoFkdAmQ9eKfnOjnV9lChoBmgJaA9DCESJljyedm5AlIaUUpRoFUv9aBZHQJkPYgbIcR11fZQoaAZoCWgPQwirevmd5oFwQJSGlFKUaBVNCgFoFkdAmQ9r0aqCH3V9lChoBmgJaA9DCFeTp6xml3BAlIaUUpRoFU0HAWgWR0CZD3XbdrO8dX2UKGgGaAloD0MIzVt1HSomckCUhpRSlGgVTQIBaBZHQJkPiGdqcmV1fZQoaAZoCWgPQwivfQG9sFtyQJSGlFKUaBVL9WgWR0CZEDQla8pTdX2UKGgGaAloD0MIEeFfBI0nc0CUhpRSlGgVTQIBaBZHQJkQO0Re1KJ1fZQoaAZoCWgPQwimKJfG76twQJSGlFKUaBVNDQFoFkdAmRBMbm2b5XV9lChoBmgJaA9DCF2/YDes13BAlIaUUpRoFU0LAWgWR0CZEG/R3NcGdX2UKGgGaAloD0MIv2A3bFv+U0CUhpRSlGgVS5doFkdAmRDN+b3GoHV9lChoBmgJaA9DCLA8SE9R0XFAlIaUUpRoFU0IAWgWR0CZEO7uUliSdX2UKGgGaAloD0MI9G+X/TpwckCUhpRSlGgVS/hoFkdAmRN7o0Q9R3V9lChoBmgJaA9DCLJl+bqM2G9AlIaUUpRoFUv4aBZHQJkTqx6fJ3h1fZQoaAZoCWgPQwiismFNZXdxQJSGlFKUaBVL5mgWR0CZE9x9oexOdX2UKGgGaAloD0MIgv+tZIeBcUCUhpRSlGgVS/BoFkdAmRPuE7GNrHV9lChoBmgJaA9DCFGFP8NbW3BAlIaUUpRoFUvoaBZHQJkUD+85CF91fZQoaAZoCWgPQwi8sgsG1+NwQJSGlFKUaBVL7WgWR0CZFFplz2eydX2UKGgGaAloD0MII6DCEWS+c0CUhpRSlGgVS/9oFkdAmRSJNTLntHV9lChoBmgJaA9DCFwFMdB1W3JAlIaUUpRoFU0KAWgWR0CZFM/9pAUtdX2UKGgGaAloD0MIe75muazlcECUhpRSlGgVTSgBaBZHQJkU7ijtXxR1fZQoaAZoCWgPQwhuUWaDzC9yQJSGlFKUaBVNDgFoFkdAmRT4kJKJ23V9lChoBmgJaA9DCFdAoZ4+7G9AlIaUUpRoFUv3aBZHQJkVZiCrcTJ1fZQoaAZoCWgPQwhuhbAay/1xQJSGlFKUaBVNBQFoFkdAmRWpg5R0l3V9lChoBmgJaA9DCHdJnBVRpm9AlIaUUpRoFU0FAWgWR0CZFcIdU83ddX2UKGgGaAloD0MIf93pzhODbkCUhpRSlGgVTQMBaBZHQJkV2+Yc/+t1fZQoaAZoCWgPQwiQ2Vn0ToVxQJSGlFKUaBVL8GgWR0CZFfujh1kldX2UKGgGaAloD0MIPrMkQM2/cUCUhpRSlGgVS/1oFkdAmRZImgJ1JXV9lChoBmgJaA9DCH+l8+FZOjRAlIaUUpRoFUuXaBZHQJkX3WI42jx1fZQoaAZoCWgPQwhBu0OKQbVxQJSGlFKUaBVL3mgWR0CZGBU70WdmdX2UKGgGaAloD0MIo1huaTWZcECUhpRSlGgVS+doFkdAmTm/a+N96XV9lChoBmgJaA9DCII65dFNm3FAlIaUUpRoFUvkaBZHQJk52l0o0AN1fZQoaAZoCWgPQwggfv57cDxxQJSGlFKUaBVL9mgWR0CZOsVXV9WqdX2UKGgGaAloD0MIPiMRGoHLcECUhpRSlGgVS/xoFkdAmTsqOT7l73V9lChoBmgJaA9DCAlwehcv1XBAlIaUUpRoFU0XAWgWR0CZOy+YtxuLdX2UKGgGaAloD0MI1ZY6yOuScUCUhpRSlGgVS/5oFkdAmTuhyCFsYXV9lChoBmgJaA9DCM9IhEYwWnFAlIaUUpRoFUvcaBZHQJk8G15Sm651fZQoaAZoCWgPQwiNs+kI4BtvQJSGlFKUaBVL+mgWR0CZPHJT2nKodX2UKGgGaAloD0MI7nppioBMcUCUhpRSlGgVS+5oFkdAmTxxjSXt0HV9lChoBmgJaA9DCFD7rZ3oTHFAlIaUUpRoFUv+aBZHQJk8pBrvb491fZQoaAZoCWgPQwhqiZXRCPNxQJSGlFKUaBVNFQFoFkdAmTy8/IKc/nV9lChoBmgJaA9DCDJ2wkuwonFAlIaUUpRoFU09AWgWR0CZPPWmP5pKdX2UKGgGaAloD0MIJGO1+X9/SUCUhpRSlGgVS7doFkdAmT1uLzf78HV9lChoBmgJaA9DCN2VXTA4yXBAlIaUUpRoFU0PAWgWR0CZPY5tWMjvdX2UKGgGaAloD0MIDvW7sDWnP0CUhpRSlGgVS7VoFkdAmT7EsOG0u3V9lChoBmgJaA9DCN/eNehLknBAlIaUUpRoFU0IAWgWR0CZP2HwgDA8dX2UKGgGaAloD0MI/b0UHrRIcUCUhpRSlGgVTQQBaBZHQJk/pnrY5DJ1fZQoaAZoCWgPQwhxVkRN9CtwQJSGlFKUaBVNFAFoFkdAmUAe8XenAXV9lChoBmgJaA9DCHN/9bhvj3BAlIaUUpRoFUvqaBZHQJlAY6r/82t1fZQoaAZoCWgPQwgy5UNQtQpvQJSGlFKUaBVL7GgWR0CZQHLIxQBQdX2UKGgGaAloD0MI/rj98gl6cUCUhpRSlGgVS9VoFkdAmUFE/fO2RnV9lChoBmgJaA9DCD874LriE3JAlIaUUpRoFUvUaBZHQJlBXJRwZO11fZQoaAZoCWgPQwgz/RLx1iNtQJSGlFKUaBVNDgFoFkdAmUITAN5MUXV9lChoBmgJaA9DCN/gC5NpOHJAlIaUUpRoFU0JAWgWR0CZQj6OYIBzdX2UKGgGaAloD0MIqifzj/5WcUCUhpRSlGgVS99oFkdAmUJ0nogV5HV9lChoBmgJaA9DCMMpc/NNUnFAlIaUUpRoFU0RAWgWR0CZQnBMSK3vdX2UKGgGaAloD0MI1ouhnOiVckCUhpRSlGgVTQEBaBZHQJlCoN3GGVR1fZQoaAZoCWgPQwgmGTkL+7BwQJSGlFKUaBVNGgFoFkdAmUQHE2pAEHV9lChoBmgJaA9DCPXyO00mRnFAlIaUUpRoFUvvaBZHQJlFWCpWFOB1fZQoaAZoCWgPQwg17WKaaXtwQJSGlFKUaBVL22gWR0CZRVdszl90dX2UKGgGaAloD0MIEFmkifemb0CUhpRSlGgVTQUBaBZHQJlFlY+0PYp1fZQoaAZoCWgPQwgEdcqjG2VPQJSGlFKUaBVLsmgWR0CZRa3zMA3ldX2UKGgGaAloD0MI9RPObi2cb0CUhpRSlGgVS+RoFkdAmUXjmGM4tHV9lChoBmgJaA9DCGeAC7Jl13BAlIaUUpRoFUvraBZHQJlF/MfRu0l1fZQoaAZoCWgPQwjSxhFrcR5xQJSGlFKUaBVNLgFoFkdAmUX6Vlf7anV9lChoBmgJaA9DCLpL4qwIy3JAlIaUUpRoFU0AAmgWR0CZR2Z5AyEddX2UKGgGaAloD0MICcIVUGj6cECUhpRSlGgVTRQBaBZHQJlH1N5+pfh1fZQoaAZoCWgPQwh551CGKohwQJSGlFKUaBVL+mgWR0CZSAguAZsLdX2UKGgGaAloD0MInnx6bMtgcUCUhpRSlGgVS/doFkdAmUgh1cMVlHV9lChoBmgJaA9DCG+6ZYc4DHJAlIaUUpRoFUvzaBZHQJlIdK6Fuel1fZQoaAZoCWgPQwh2U8pr5bpwQJSGlFKUaBVNDgFoFkdAmUjPOUt7KXV9lChoBmgJaA9DCL7Z5sb0YG5AlIaUUpRoFU0PAWgWR0CZSNncclw+dX2UKGgGaAloD0MIwLSoT/JsckCUhpRSlGgVS/9oFkdAmUnuscQyynV9lChoBmgJaA9DCMpt+x51eW9AlIaUUpRoFUvjaBZHQJlK2EK3NLV1fZQoaAZoCWgPQwiAnZs2oxRwQJSGlFKUaBVL7mgWR0CZSwgfEGaAdX2UKGgGaAloD0MIjs75KQ6wcUCUhpRSlGgVTQwBaBZHQJlLixGDtgN1fZQoaAZoCWgPQwjDRe7pKrdxQJSGlFKUaBVL92gWR0CZS7XdTHbRdX2UKGgGaAloD0MIURToE/kXcUCUhpRSlGgVS/xoFkdAmUvXI6r/83V9lChoBmgJaA9DCLTk8bT8CmNAlIaUUpRoFU3oA2gWR0CZS/xZMcp9dX2UKGgGaAloD0MITgmISTgdcUCUhpRSlGgVTSIBaBZHQJlMHfIjnmt1fZQoaAZoCWgPQwiwBFJiFyJzQJSGlFKUaBVNKAFoFkdAmUystwrDqHV9lChoBmgJaA9DCGAGY0RifXFAlIaUUpRoFUvhaBZHQJlM9dxAB1d1fZQoaAZoCWgPQwithVloZ0FyQJSGlFKUaBVL+GgWR0CZTZ7dznzQdX2UKGgGaAloD0MIZ3+g3LagcECUhpRSlGgVS/VoFkdAmU2ocaOxS3V9lChoBmgJaA9DCHsQAvKlgG1AlIaUUpRoFUvxaBZHQJlN3sniNsF1fZQoaAZoCWgPQwgQyvs4WrJwQJSGlFKUaBVNIgFoFkdAmU3xXnyNGXV9lChoBmgJaA9DCLn+XZ85aXBAlIaUUpRoFUvwaBZHQJlOK8xsVL11fZQoaAZoCWgPQwj1ona/illuQJSGlFKUaBVL9GgWR0CZTkfKZDzAdX2UKGgGaAloD0MI5ulcUcrkcECUhpRSlGgVTRgBaBZHQJlQHcrRSgp1fZQoaAZoCWgPQwh/37958VdxQJSGlFKUaBVL+GgWR0CZUG3Zf2K3dX2UKGgGaAloD0MIcy8wK5QZb0CUhpRSlGgVS+loFkdAmVCMfvF3p3V9lChoBmgJaA9DCOlkqfX+Im9AlIaUUpRoFU0GAWgWR0CZUJXMhX8wdX2UKGgGaAloD0MIJ9vAHegdckCUhpRSlGgVS+loFkdAmVEUZJkGzXV9lChoBmgJaA9DCO4FZoWiym1AlIaUUpRoFUv6aBZHQJlRGFdszl91ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 324,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 32,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
LunarLander3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5abaea31b9ba6afcb8fcc29dc17491edc7f0a3c2b48fc19cb8613127e855f2de
3
+ size 88057
LunarLander3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0413cb23a38757f395982688fca608ec60b26c9c9b14757354be4cf9ca4d2b7
3
+ size 43201
LunarLander3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LunarLander3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.225-1-MANJARO-x86_64-with-glibc2.36 #1 SMP PREEMPT Sat Nov 26 00:40:25 UTC 2022
2
+ Python: 3.9.0
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu117
5
+ GPU Enabled: True
6
+ Numpy: 1.23.5
7
+ Gym: 0.21.0
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 265.80 +/- 22.28
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 274.26 +/- 16.41
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f47509795e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4750979670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4750979700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4750979790>", "_build": "<function ActorCriticPolicy._build at 0x7f4750979820>", "forward": "<function ActorCriticPolicy.forward at 0x7f47509798b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4750979940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f47509799d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4750979a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4750979af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4750979b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4750971e10>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 311296, "_total_timesteps": 300000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670520573310668375, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABq/Vr3hPLe6QftGOLczNzNdUb45mBljtwAAgD8AAIA/ZtaNPI82YbpfFo8zg/qsL6u8x7mKmsCzAACAPwAAgD/mneG9UrL0u+tSUT4D6BW+C2HQvB6jM78AAIA/AACAPwC3sbzXOyK7RZXXvHdcHD0VYF48dcQEvgAAgD8AAIA/5u2hvZZ+Fz2+iEi9izR7vvaKdLuDB+u8AAAAAAAAAAC6sze+plmMPysebb4Gu+C+el52vp1kYLwAAAAAAAAAAM2lYL09fn06SjY6PH8V6rql0Do6Ov8xPAAAAAAAAAAAJifJvYkkKz+W6z4+WpPFvgpT57xqzQY8AAAAAAAAAADmOVA9R6K2PxXY7z5gnEy9GovwPEqyUz4AAAAAAAAAAIBRkT3vong/tWVqPdJewb5KkA0+5TpYPQAAAAAAAAAA5rRDvXtijLruuzK4Yv88s3nf6rn8y0s3AACAPwAAgD8Anzu9G7yPvG6Clry+bYI8dOhJPTY5cT4AAIA/AACAP7O8X70p7w47YLpHPvYRfb4U5Ks9xppyvgAAAAAAAIA/GiaAvXgfJz/yyFI95h/dvjB3tb12q409AAAAAAAAAACAl0W9fKEWPQP2dLyLcYa+FUmtPBFJQb0AAAAAAAAAAJpJobspWCW6gsUdN7wFFzH6n4m6u581tgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.037653333333333316, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5+Jve4K5W0CUhpRSlIwBbJRN6AOMAXSUR0C/PMcrAgxKdX2UKGgGaAloD0MIY/GbwkqgYkCUhpRSlGgVTegDaBZHQL8+Aa8Hv+h1fZQoaAZoCWgPQwhDyHn/X7FwQJSGlFKUaBVNiwJoFkdAv0tIZiuuBHV9lChoBmgJaA9DCJupEI+EUXBAlIaUUpRoFU3tAmgWR0C/TRoQJ5VwdX2UKGgGaAloD0MIOL9hokFMZUCUhpRSlGgVTegDaBZHQL9PocE/0NB1fZQoaAZoCWgPQwjn5EUm4ONgQJSGlFKUaBVN6ANoFkdAv1EEeIVM23V9lChoBmgJaA9DCIBEEyhiU1xAlIaUUpRoFU3oA2gWR0C/Uhl6qsEJdX2UKGgGaAloD0MIRL+2fvp4YECUhpRSlGgVTegDaBZHQL9STnpSrHV1fZQoaAZoCWgPQwiLbr2mB+xhQJSGlFKUaBVN6ANoFkdAv1J3Ru0kW3V9lChoBmgJaA9DCN9rCI7LF2VAlIaUUpRoFU3oA2gWR0C/Urqk/KQrdX2UKGgGaAloD0MI0cq9wCyJa0CUhpRSlGgVTZADaBZHQL9TbKv3ai91fZQoaAZoCWgPQwjgg9cubaJdQJSGlFKUaBVN6ANoFkdAv1N0FUyYX3V9lChoBmgJaA9DCL6JITnZSHJAlIaUUpRoFU0gAWgWR0C/VFWZAprldX2UKGgGaAloD0MIcM0d/W/UckCUhpRSlGgVTaoCaBZHQL9VGccENfB1fZQoaAZoCWgPQwjlJmpp7rNlQJSGlFKUaBVN6ANoFkdAv1dCgf2bonV9lChoBmgJaA9DCDkroib6cmVAlIaUUpRoFU3oA2gWR0C/V5E+5e7ddX2UKGgGaAloD0MIXYjVH2FiYkCUhpRSlGgVTegDaBZHQL9YDgQYk3V1fZQoaAZoCWgPQwjH1ciutBRxQJSGlFKUaBVL9WgWR0C/WBfYnOSodX2UKGgGaAloD0MIij20j5WbYkCUhpRSlGgVTegDaBZHQL9YrgFHJ911fZQoaAZoCWgPQwh/wW7YNoFlQJSGlFKUaBVN6ANoFkdAv1i/wG4ZuXV9lChoBmgJaA9DCOZd9YA53XFAlIaUUpRoFU0VAWgWR0C/WTxMJx//dX2UKGgGaAloD0MIE0TdB2CkcUCUhpRSlGgVTQcCaBZHQL9Zoki2Ujd1fZQoaAZoCWgPQwiEKjV7oGdyQJSGlFKUaBVNtgFoFkdAv1mz0btJF3V9lChoBmgJaA9DCPGbwkoFlG5AlIaUUpRoFU2NAmgWR0C/ZShRhttRdX2UKGgGaAloD0MIOCwN/KjpY0CUhpRSlGgVTegDaBZHQL9lWtRekYZ1fZQoaAZoCWgPQwihnj4CPztyQJSGlFKUaBVNXwJoFkdAv2XCCNCJGnV9lChoBmgJaA9DCKYPXVCfy3FAlIaUUpRoFU2NAmgWR0C/Zfi4z7/GdX2UKGgGaAloD0MIo68gzViTZECUhpRSlGgVTegDaBZHQL9mq+hXbM51fZQoaAZoCWgPQwg0D2CRX1lvQJSGlFKUaBVNhwFoFkdAv2bl+fAbhnV9lChoBmgJaA9DCEKZRpOLN3NAlIaUUpRoFU12AWgWR0C/Z00pqh11dX2UKGgGaAloD0MIbjMV4hFzckCUhpRSlGgVTVMBaBZHQL9nYXNC7bt1fZQoaAZoCWgPQwj8GkmC8BduQJSGlFKUaBVNIwNoFkdAv2f2ANG3F3V9lChoBmgJaA9DCO+pnPYU/3FAlIaUUpRoFU1XAWgWR0C/aAaaoddWdX2UKGgGaAloD0MI9mIoJ1pebUCUhpRSlGgVTQYDaBZHQL9ofweeWfN1fZQoaAZoCWgPQwhV98jmqjNuQJSGlFKUaBVNKQJoFkdAv2k7qNZNf3V9lChoBmgJaA9DCEWhZd3/HnJAlIaUUpRoFU1CAWgWR0C/azR8D0UXdX2UKGgGaAloD0MICAPPvQfUcECUhpRSlGgVTZcBaBZHQL9rXpYs/Y91fZQoaAZoCWgPQwhdF35wvoJxQJSGlFKUaBVNoQFoFkdAv2xzOIInjXV9lChoBmgJaA9DCMFvQ4xXFXBAlIaUUpRoFU1PAWgWR0C/bXRGMGX5dX2UKGgGaAloD0MIUDdQ4J1rcECUhpRSlGgVTbMBaBZHQL9ttZRsMy91fZQoaAZoCWgPQwiCixU1WE5wQJSGlFKUaBVNDANoFkdAv23divxH5XV9lChoBmgJaA9DCDvEP2ypU3JAlIaUUpRoFU0zAWgWR0C/beQ0Kqn4dX2UKGgGaAloD0MI4xsKn23CcECUhpRSlGgVTUwCaBZHQL9t+yzHCGh1fZQoaAZoCWgPQwithsQ91j1wQJSGlFKUaBVNDwJoFkdAv27RnXd0rHV9lChoBmgJaA9DCCWUvhByJnFAlIaUUpRoFU0OAWgWR0C/b17hJiAldX2UKGgGaAloD0MIiC6obxmuY0CUhpRSlGgVTegDaBZHQL9wHiiqQzV1fZQoaAZoCWgPQwjf/IaJxktxQJSGlFKUaBVNQAJoFkdAv3AqA8Swn3V9lChoBmgJaA9DCKRUwhN6sW5AlIaUUpRoFU0pAWgWR0C/cKYWtU4rdX2UKGgGaAloD0MIjlph+l6mbUCUhpRSlGgVTdwDaBZHQL9xviILw4N1fZQoaAZoCWgPQwgBTBk4IKhxQJSGlFKUaBVNmQNoFkdAv3HJBppN9HV9lChoBmgJaA9DCIdu9gfKHGNAlIaUUpRoFU3oA2gWR0C/cdZz5oGqdX2UKGgGaAloD0MI7yB2ptCtcUCUhpRSlGgVTUoBaBZHQL9ySsr/bTN1fZQoaAZoCWgPQwg0EMtmDn9wQJSGlFKUaBVN9AJoFkdAv3Kvj1f3OHV9lChoBmgJaA9DCL7ArFDkAHFAlIaUUpRoFU2XAWgWR0C/fuPO6d1/dX2UKGgGaAloD0MIyH4WS5EeU0CUhpRSlGgVTegDaBZHQL9+/b7CSA91fZQoaAZoCWgPQwigFoOHafxvQJSGlFKUaBVNrAFoFkdAv39RopQUH3V9lChoBmgJaA9DCKmkTkCTo3FAlIaUUpRoFUv9aBZHQL9/aYODrZ91fZQoaAZoCWgPQwiy9ne2xzJuQJSGlFKUaBVNCAFoFkdAv3+OrgflqHV9lChoBmgJaA9DCHeGqS21RHBAlIaUUpRoFU3FAWgWR0C/f8M4ku6FdX2UKGgGaAloD0MIDMufb4vLa0CUhpRSlGgVTWsBaBZHQL9/8dfb9Ih1fZQoaAZoCWgPQwgZOQt7WvNvQJSGlFKUaBVNrwJoFkdAv4BdNZeRgnV9lChoBmgJaA9DCGA/xAaLgG9AlIaUUpRoFU08AWgWR0C/gGU4FRpDdX2UKGgGaAloD0MI65Cb4Qb/b0CUhpRSlGgVTRUCaBZHQL+AeBomG/N1fZQoaAZoCWgPQwjsM2d9yipxQJSGlFKUaBVL+WgWR0C/gIVXNke7dX2UKGgGaAloD0MIWfj6WhedcUCUhpRSlGgVTQIBaBZHQL+Ak+V1Oj91fZQoaAZoCWgPQwgwYwrWOFZvQJSGlFKUaBVL7mgWR0C/gUUhFEy+dX2UKGgGaAloD0MIT+s2qP18b0CUhpRSlGgVTT0CaBZHQL+BfwSamXR1fZQoaAZoCWgPQwi3uMZncmtwQJSGlFKUaBVNBQFoFkdAv4HROBUaQ3V9lChoBmgJaA9DCNkh/mFLfXFAlIaUUpRoFU2MAWgWR0C/gfPMr3CbdX2UKGgGaAloD0MI96sA323CckCUhpRSlGgVTVsBaBZHQL+CINATqSp1fZQoaAZoCWgPQwg7qMR1DPxtQJSGlFKUaBVL6WgWR0C/gjEbDMvAdX2UKGgGaAloD0MIjuvf9VleckCUhpRSlGgVTUkBaBZHQL+Cmt/FzdV1fZQoaAZoCWgPQwhcjlcg+t1tQJSGlFKUaBVL7GgWR0C/guXs1KoRdX2UKGgGaAloD0MIg9vawvOmckCUhpRSlGgVTQoBaBZHQL+C/NayKN11fZQoaAZoCWgPQwh0zk9xHAZxQJSGlFKUaBVNdAFoFkdAv4Rgsxwhn3V9lChoBmgJaA9DCA3C3O4lmnBAlIaUUpRoFU0GAWgWR0C/hHAC4jKQdX2UKGgGaAloD0MIP6vMlJY2cUCUhpRSlGgVTd8BaBZHQL+EjRtxdY51fZQoaAZoCWgPQwiAC7Jl+V1tQJSGlFKUaBVNLAFoFkdAv4SgjAzpHXV9lChoBmgJaA9DCHDpmPMM33FAlIaUUpRoFU2TAWgWR0C/hKzaXa8IdX2UKGgGaAloD0MI176AXnh+c0CUhpRSlGgVTd8BaBZHQL+Ey4OMERt1fZQoaAZoCWgPQwg4ZW6+URNxQJSGlFKUaBVNQgJoFkdAv4T6BNEgGXV9lChoBmgJaA9DCC3Q7pBiIHBAlIaUUpRoFU2uAWgWR0C/hRpq20AtdX2UKGgGaAloD0MIjrCoiJPvcUCUhpRSlGgVTUABaBZHQL+FYj0+TvB1fZQoaAZoCWgPQwj6J7hYUd9uQJSGlFKUaBVNUAFoFkdAv4WpeKKpDXV9lChoBmgJaA9DCGL2su00v29AlIaUUpRoFU0KAWgWR0C/hfKziS7odX2UKGgGaAloD0MICmr4FhaLcECUhpRSlGgVTW8BaBZHQL+GJA+IM0B1fZQoaAZoCWgPQwhxV68i4zRyQJSGlFKUaBVNPwFoFkdAv4Zs5wOvuHV9lChoBmgJaA9DCKDgYkVNTHFAlIaUUpRoFU2JAWgWR0C/hnwdXDFZdX2UKGgGaAloD0MIAFMGDmi0cUCUhpRSlGgVS/ZoFkdAv4b8tsenynV9lChoBmgJaA9DCBEawcZ1W25AlIaUUpRoFU1hA2gWR0C/h25TdcjadX2UKGgGaAloD0MIHhuBeB0rcECUhpRSlGgVTQEBaBZHQL+HdsY2sJZ1fZQoaAZoCWgPQwj1EfjDT6ltQJSGlFKUaBVNJQFoFkdAv4ehqEeyRnV9lChoBmgJaA9DCFiqC3jZmXBAlIaUUpRoFU3LAWgWR0C/h6RJmNBGdX2UKGgGaAloD0MIngyOkleqb0CUhpRSlGgVS/RoFkdAv4em704BFXV9lChoBmgJaA9DCCfcK/PW5m9AlIaUUpRoFU04AWgWR0C/h7KAe7tidX2UKGgGaAloD0MI7gbRWlGucECUhpRSlGgVTWUBaBZHQL+ITMcIZ651fZQoaAZoCWgPQwgW26SiMX9tQJSGlFKUaBVNWAFoFkdAv4iA+lj3EnV9lChoBmgJaA9DCGoxeJg2HXJAlIaUUpRoFUvtaBZHQL+I4Cbc45t1fZQoaAZoCWgPQwjHgsKgTHlxQJSGlFKUaBVNCwFoFkdAv4jq98JD3XV9lChoBmgJaA9DCK95VWf1JnJAlIaUUpRoFU0SAWgWR0C/iVNP1tfpdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 324, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9e017f41f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9e017f4280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9e017f4310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9e017f43a0>", "_build": "<function ActorCriticPolicy._build at 0x7f9e017f4430>", "forward": "<function ActorCriticPolicy.forward at 0x7f9e017f44c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9e017f4550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9e017f45e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9e017f4670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9e017f4700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9e017f4790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9e017f5480>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670577263626651242, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAC887sQMrM/9La9vi4ag755MNw7ZFhBPQAAAAAAAAAA7fENvrIkMT40hY0+fvSNvlmBaT0KLYQ7AAAAAAAAAACaj149ar9HPlZ3lb0GX5S+gEzHvT5Pg7wAAAAAAAAAAM2cqjoWgbU/k/yHPPGtub4+bzM9h6jJvAAAAAAAAAAAALqJvM+6FbyEL4o8NUFwPVDbP7xNNxY8AACAPwAAgD9AT/89oo2LP8qV4D7u7RS/gwhaPqhKpD4AAAAAAAAAADPdqLy25R68N79AOUMTkjwAgYq9a/dxPQAAgD8AAIA/TWM7vcdCMD7UYDw+hXuTvl3LOT4CePy9AAAAAAAAAAAaEiA9fv2ePQpNgb23r5q+LXWhvdoitLwAAAAAAAAAADNjYjs0Doc/K3PzOLwwyL6dyX49DpUBvQAAAAAAAAAAZtebvQPAQD2bd5C8MDXYvhQV4r7j/Wk+AAAAAAAAAAAzi5i9O1eVvOBoXD3SkeC9bissPGKAqD4AAIA/AACAP80j2LyPmgm6+zNIs/lfbC/LLbk7MT24MwAAgD8AAIA/DdGoPfU5rT8K/7A+UxHLvt6zOT4Wi3s+AAAAAAAAAAAAsII6zUqzP0DLzj32Gui+coqWuh1eu7wAAAAAAAAAAM1gXD3K2X4+erqrvUE7j74yv5U8igL8vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZB75g0HecUCUhpRSlIwBbJRNBwGMAXSUR0CZC5WSU1Q7dX2UKGgGaAloD0MIMEymCoYfckCUhpRSlGgVS9BoFkdAmQ2mdupCKXV9lChoBmgJaA9DCFJlGHdDJHJAlIaUUpRoFU0nAWgWR0CZDnNFjNILdX2UKGgGaAloD0MIDFcHQNxbcECUhpRSlGgVS/ZoFkdAmQ6jXjENv3V9lChoBmgJaA9DCFtgj4mU03BAlIaUUpRoFUvWaBZHQJkOx4A0bcZ1fZQoaAZoCWgPQwg26iEaHYpxQJSGlFKUaBVL5WgWR0CZDxUX531SdX2UKGgGaAloD0MIu/HuyBj/cUCUhpRSlGgVTQsBaBZHQJkPR/qgRK91fZQoaAZoCWgPQwjudr00xeVvQJSGlFKUaBVNCwFoFkdAmQ9eKfnOjnV9lChoBmgJaA9DCESJljyedm5AlIaUUpRoFUv9aBZHQJkPYgbIcR11fZQoaAZoCWgPQwirevmd5oFwQJSGlFKUaBVNCgFoFkdAmQ9r0aqCH3V9lChoBmgJaA9DCFeTp6xml3BAlIaUUpRoFU0HAWgWR0CZD3XbdrO8dX2UKGgGaAloD0MIzVt1HSomckCUhpRSlGgVTQIBaBZHQJkPiGdqcmV1fZQoaAZoCWgPQwivfQG9sFtyQJSGlFKUaBVL9WgWR0CZEDQla8pTdX2UKGgGaAloD0MIEeFfBI0nc0CUhpRSlGgVTQIBaBZHQJkQO0Re1KJ1fZQoaAZoCWgPQwimKJfG76twQJSGlFKUaBVNDQFoFkdAmRBMbm2b5XV9lChoBmgJaA9DCF2/YDes13BAlIaUUpRoFU0LAWgWR0CZEG/R3NcGdX2UKGgGaAloD0MIv2A3bFv+U0CUhpRSlGgVS5doFkdAmRDN+b3GoHV9lChoBmgJaA9DCLA8SE9R0XFAlIaUUpRoFU0IAWgWR0CZEO7uUliSdX2UKGgGaAloD0MI9G+X/TpwckCUhpRSlGgVS/hoFkdAmRN7o0Q9R3V9lChoBmgJaA9DCLJl+bqM2G9AlIaUUpRoFUv4aBZHQJkTqx6fJ3h1fZQoaAZoCWgPQwiismFNZXdxQJSGlFKUaBVL5mgWR0CZE9x9oexOdX2UKGgGaAloD0MIgv+tZIeBcUCUhpRSlGgVS/BoFkdAmRPuE7GNrHV9lChoBmgJaA9DCFGFP8NbW3BAlIaUUpRoFUvoaBZHQJkUD+85CF91fZQoaAZoCWgPQwi8sgsG1+NwQJSGlFKUaBVL7WgWR0CZFFplz2eydX2UKGgGaAloD0MII6DCEWS+c0CUhpRSlGgVS/9oFkdAmRSJNTLntHV9lChoBmgJaA9DCFwFMdB1W3JAlIaUUpRoFU0KAWgWR0CZFM/9pAUtdX2UKGgGaAloD0MIe75muazlcECUhpRSlGgVTSgBaBZHQJkU7ijtXxR1fZQoaAZoCWgPQwhuUWaDzC9yQJSGlFKUaBVNDgFoFkdAmRT4kJKJ23V9lChoBmgJaA9DCFdAoZ4+7G9AlIaUUpRoFUv3aBZHQJkVZiCrcTJ1fZQoaAZoCWgPQwhuhbAay/1xQJSGlFKUaBVNBQFoFkdAmRWpg5R0l3V9lChoBmgJaA9DCHdJnBVRpm9AlIaUUpRoFU0FAWgWR0CZFcIdU83ddX2UKGgGaAloD0MIf93pzhODbkCUhpRSlGgVTQMBaBZHQJkV2+Yc/+t1fZQoaAZoCWgPQwiQ2Vn0ToVxQJSGlFKUaBVL8GgWR0CZFfujh1kldX2UKGgGaAloD0MIPrMkQM2/cUCUhpRSlGgVS/1oFkdAmRZImgJ1JXV9lChoBmgJaA9DCH+l8+FZOjRAlIaUUpRoFUuXaBZHQJkX3WI42jx1fZQoaAZoCWgPQwhBu0OKQbVxQJSGlFKUaBVL3mgWR0CZGBU70WdmdX2UKGgGaAloD0MIo1huaTWZcECUhpRSlGgVS+doFkdAmTm/a+N96XV9lChoBmgJaA9DCII65dFNm3FAlIaUUpRoFUvkaBZHQJk52l0o0AN1fZQoaAZoCWgPQwggfv57cDxxQJSGlFKUaBVL9mgWR0CZOsVXV9WqdX2UKGgGaAloD0MIPiMRGoHLcECUhpRSlGgVS/xoFkdAmTsqOT7l73V9lChoBmgJaA9DCAlwehcv1XBAlIaUUpRoFU0XAWgWR0CZOy+YtxuLdX2UKGgGaAloD0MI1ZY6yOuScUCUhpRSlGgVS/5oFkdAmTuhyCFsYXV9lChoBmgJaA9DCM9IhEYwWnFAlIaUUpRoFUvcaBZHQJk8G15Sm651fZQoaAZoCWgPQwiNs+kI4BtvQJSGlFKUaBVL+mgWR0CZPHJT2nKodX2UKGgGaAloD0MI7nppioBMcUCUhpRSlGgVS+5oFkdAmTxxjSXt0HV9lChoBmgJaA9DCFD7rZ3oTHFAlIaUUpRoFUv+aBZHQJk8pBrvb491fZQoaAZoCWgPQwhqiZXRCPNxQJSGlFKUaBVNFQFoFkdAmTy8/IKc/nV9lChoBmgJaA9DCDJ2wkuwonFAlIaUUpRoFU09AWgWR0CZPPWmP5pKdX2UKGgGaAloD0MIJGO1+X9/SUCUhpRSlGgVS7doFkdAmT1uLzf78HV9lChoBmgJaA9DCN2VXTA4yXBAlIaUUpRoFU0PAWgWR0CZPY5tWMjvdX2UKGgGaAloD0MIDvW7sDWnP0CUhpRSlGgVS7VoFkdAmT7EsOG0u3V9lChoBmgJaA9DCN/eNehLknBAlIaUUpRoFU0IAWgWR0CZP2HwgDA8dX2UKGgGaAloD0MI/b0UHrRIcUCUhpRSlGgVTQQBaBZHQJk/pnrY5DJ1fZQoaAZoCWgPQwhxVkRN9CtwQJSGlFKUaBVNFAFoFkdAmUAe8XenAXV9lChoBmgJaA9DCHN/9bhvj3BAlIaUUpRoFUvqaBZHQJlAY6r/82t1fZQoaAZoCWgPQwgy5UNQtQpvQJSGlFKUaBVL7GgWR0CZQHLIxQBQdX2UKGgGaAloD0MI/rj98gl6cUCUhpRSlGgVS9VoFkdAmUFE/fO2RnV9lChoBmgJaA9DCD874LriE3JAlIaUUpRoFUvUaBZHQJlBXJRwZO11fZQoaAZoCWgPQwgz/RLx1iNtQJSGlFKUaBVNDgFoFkdAmUITAN5MUXV9lChoBmgJaA9DCN/gC5NpOHJAlIaUUpRoFU0JAWgWR0CZQj6OYIBzdX2UKGgGaAloD0MIqifzj/5WcUCUhpRSlGgVS99oFkdAmUJ0nogV5HV9lChoBmgJaA9DCMMpc/NNUnFAlIaUUpRoFU0RAWgWR0CZQnBMSK3vdX2UKGgGaAloD0MI1ouhnOiVckCUhpRSlGgVTQEBaBZHQJlCoN3GGVR1fZQoaAZoCWgPQwgmGTkL+7BwQJSGlFKUaBVNGgFoFkdAmUQHE2pAEHV9lChoBmgJaA9DCPXyO00mRnFAlIaUUpRoFUvvaBZHQJlFWCpWFOB1fZQoaAZoCWgPQwg17WKaaXtwQJSGlFKUaBVL22gWR0CZRVdszl90dX2UKGgGaAloD0MIEFmkifemb0CUhpRSlGgVTQUBaBZHQJlFlY+0PYp1fZQoaAZoCWgPQwgEdcqjG2VPQJSGlFKUaBVLsmgWR0CZRa3zMA3ldX2UKGgGaAloD0MI9RPObi2cb0CUhpRSlGgVS+RoFkdAmUXjmGM4tHV9lChoBmgJaA9DCGeAC7Jl13BAlIaUUpRoFUvraBZHQJlF/MfRu0l1fZQoaAZoCWgPQwjSxhFrcR5xQJSGlFKUaBVNLgFoFkdAmUX6Vlf7anV9lChoBmgJaA9DCLpL4qwIy3JAlIaUUpRoFU0AAmgWR0CZR2Z5AyEddX2UKGgGaAloD0MICcIVUGj6cECUhpRSlGgVTRQBaBZHQJlH1N5+pfh1fZQoaAZoCWgPQwh551CGKohwQJSGlFKUaBVL+mgWR0CZSAguAZsLdX2UKGgGaAloD0MInnx6bMtgcUCUhpRSlGgVS/doFkdAmUgh1cMVlHV9lChoBmgJaA9DCG+6ZYc4DHJAlIaUUpRoFUvzaBZHQJlIdK6Fuel1fZQoaAZoCWgPQwh2U8pr5bpwQJSGlFKUaBVNDgFoFkdAmUjPOUt7KXV9lChoBmgJaA9DCL7Z5sb0YG5AlIaUUpRoFU0PAWgWR0CZSNncclw+dX2UKGgGaAloD0MIwLSoT/JsckCUhpRSlGgVS/9oFkdAmUnuscQyynV9lChoBmgJaA9DCMpt+x51eW9AlIaUUpRoFUvjaBZHQJlK2EK3NLV1fZQoaAZoCWgPQwiAnZs2oxRwQJSGlFKUaBVL7mgWR0CZSwgfEGaAdX2UKGgGaAloD0MIjs75KQ6wcUCUhpRSlGgVTQwBaBZHQJlLixGDtgN1fZQoaAZoCWgPQwjDRe7pKrdxQJSGlFKUaBVL92gWR0CZS7XdTHbRdX2UKGgGaAloD0MIURToE/kXcUCUhpRSlGgVS/xoFkdAmUvXI6r/83V9lChoBmgJaA9DCLTk8bT8CmNAlIaUUpRoFU3oA2gWR0CZS/xZMcp9dX2UKGgGaAloD0MITgmISTgdcUCUhpRSlGgVTSIBaBZHQJlMHfIjnmt1fZQoaAZoCWgPQwiwBFJiFyJzQJSGlFKUaBVNKAFoFkdAmUystwrDqHV9lChoBmgJaA9DCGAGY0RifXFAlIaUUpRoFUvhaBZHQJlM9dxAB1d1fZQoaAZoCWgPQwithVloZ0FyQJSGlFKUaBVL+GgWR0CZTZ7dznzQdX2UKGgGaAloD0MIZ3+g3LagcECUhpRSlGgVS/VoFkdAmU2ocaOxS3V9lChoBmgJaA9DCHsQAvKlgG1AlIaUUpRoFUvxaBZHQJlN3sniNsF1fZQoaAZoCWgPQwgQyvs4WrJwQJSGlFKUaBVNIgFoFkdAmU3xXnyNGXV9lChoBmgJaA9DCLn+XZ85aXBAlIaUUpRoFUvwaBZHQJlOK8xsVL11fZQoaAZoCWgPQwj1ona/illuQJSGlFKUaBVL9GgWR0CZTkfKZDzAdX2UKGgGaAloD0MI5ulcUcrkcECUhpRSlGgVTRgBaBZHQJlQHcrRSgp1fZQoaAZoCWgPQwh/37958VdxQJSGlFKUaBVL+GgWR0CZUG3Zf2K3dX2UKGgGaAloD0MIcy8wK5QZb0CUhpRSlGgVS+loFkdAmVCMfvF3p3V9lChoBmgJaA9DCOlkqfX+Im9AlIaUUpRoFU0GAWgWR0CZUJXMhX8wdX2UKGgGaAloD0MIJ9vAHegdckCUhpRSlGgVS+loFkdAmVEUZJkGzXV9lChoBmgJaA9DCO4FZoWiym1AlIaUUpRoFUv6aBZHQJlRGFdszl91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 324, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2RlbWkvbWluaWNvbmRhMy9lbnZzL2x1bmFyL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9kZW1pL21pbmljb25kYTMvZW52cy9sdW5hci9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.225-1-MANJARO-x86_64-with-glibc2.36 #1 SMP PREEMPT Sat Nov 26 00:40:25 UTC 2022", "Python": "3.9.0", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 265.7978978085128, "std_reward": 22.28453448874595, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-08T17:48:33.569345"}
 
1
+ {"mean_reward": 274.26180531190175, "std_reward": 16.407025413406746, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-09T12:05:10.093133"}