metadata
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
- generated_from_trainer
model-index:
- name: lilt-en-funsd
results: []
lilt-en-funsd
This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:
- eval_loss: 1.7170
- eval_ANSWER: {'precision': 0.8775510204081632, 'recall': 0.8947368421052632, 'f1': 0.886060606060606, 'number': 817}
- eval_HEADER: {'precision': 0.4644808743169399, 'recall': 0.7142857142857143, 'f1': 0.5629139072847683, 'number': 119}
- eval_QUESTION: {'precision': 0.8934348239771646, 'recall': 0.871866295264624, 'f1': 0.8825187969924814, 'number': 1077}
- eval_overall_precision: 0.8491
- eval_overall_recall: 0.8718
- eval_overall_f1: 0.8603
- eval_overall_accuracy: 0.7983
- eval_runtime: 59.4689
- eval_samples_per_second: 0.841
- eval_steps_per_second: 0.118
- epoch: 84.2105
- step: 1600
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
- mixed_precision_training: Native AMP
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cpu
- Datasets 2.20.0
- Tokenizers 0.19.1