lilt-en-funsd / README.md
rushabhGod's picture
Model save
00969a9 verified
|
raw
history blame
7.96 kB
metadata
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
  - generated_from_trainer
model-index:
  - name: lilt-en-funsd
    results: []

lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8743
  • Answer: {'precision': 0.8584579976985041, 'recall': 0.9130966952264382, 'f1': 0.8849347568208777, 'number': 817}
  • Header: {'precision': 0.6363636363636364, 'recall': 0.5294117647058824, 'f1': 0.5779816513761468, 'number': 119}
  • Question: {'precision': 0.8976014760147601, 'recall': 0.903435468895079, 'f1': 0.9005090236001851, 'number': 1077}
  • Overall Precision: 0.8684
  • Overall Recall: 0.8852
  • Overall F1: 0.8768
  • Overall Accuracy: 0.7961

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.0432 10.5263 200 1.2673 {'precision': 0.8699386503067484, 'recall': 0.8678090575275398, 'f1': 0.8688725490196079, 'number': 817} {'precision': 0.5602836879432624, 'recall': 0.6638655462184874, 'f1': 0.6076923076923078, 'number': 119} {'precision': 0.8524734982332155, 'recall': 0.8960074280408542, 'f1': 0.8736985061113626, 'number': 1077} 0.8396 0.8708 0.8549 0.7871
0.0111 21.0526 400 1.6035 {'precision': 0.8281938325991189, 'recall': 0.9204406364749081, 'f1': 0.8718840579710144, 'number': 817} {'precision': 0.5819672131147541, 'recall': 0.5966386554621849, 'f1': 0.5892116182572614, 'number': 119} {'precision': 0.8996212121212122, 'recall': 0.8820798514391829, 'f1': 0.8907641819034223, 'number': 1077} 0.8500 0.8808 0.8651 0.7877
0.0052 31.5789 600 1.5662 {'precision': 0.8514619883040936, 'recall': 0.8910648714810282, 'f1': 0.8708133971291867, 'number': 817} {'precision': 0.6407766990291263, 'recall': 0.5546218487394958, 'f1': 0.5945945945945947, 'number': 119} {'precision': 0.8783303730017762, 'recall': 0.9182915506035283, 'f1': 0.8978665456196095, 'number': 1077} 0.8556 0.8857 0.8704 0.7957
0.0032 42.1053 800 1.7157 {'precision': 0.8119565217391305, 'recall': 0.9143206854345165, 'f1': 0.8601036269430052, 'number': 817} {'precision': 0.6867469879518072, 'recall': 0.4789915966386555, 'f1': 0.5643564356435644, 'number': 119} {'precision': 0.8967136150234741, 'recall': 0.8867223769730733, 'f1': 0.8916900093370681, 'number': 1077} 0.8506 0.8738 0.8620 0.7843
0.0023 52.6316 1000 1.7425 {'precision': 0.8685446009389671, 'recall': 0.9057527539779682, 'f1': 0.8867585380467345, 'number': 817} {'precision': 0.6283185840707964, 'recall': 0.5966386554621849, 'f1': 0.6120689655172413, 'number': 119} {'precision': 0.8882931188561215, 'recall': 0.9229340761374187, 'f1': 0.9052823315118397, 'number': 1077} 0.8661 0.8967 0.8811 0.7941
0.0011 63.1579 1200 1.8113 {'precision': 0.8514285714285714, 'recall': 0.9118727050183598, 'f1': 0.8806146572104018, 'number': 817} {'precision': 0.6272727272727273, 'recall': 0.5798319327731093, 'f1': 0.6026200873362446, 'number': 119} {'precision': 0.8959854014598541, 'recall': 0.9117920148560817, 'f1': 0.9038196042337783, 'number': 1077} 0.8630 0.8922 0.8774 0.7946
0.0005 73.6842 1400 1.8814 {'precision': 0.8533791523482245, 'recall': 0.9118727050183598, 'f1': 0.8816568047337279, 'number': 817} {'precision': 0.5362318840579711, 'recall': 0.6218487394957983, 'f1': 0.5758754863813229, 'number': 119} {'precision': 0.8961646398503275, 'recall': 0.8895078922934077, 'f1': 0.8928238583410998, 'number': 1077} 0.8543 0.8828 0.8683 0.7877
0.0006 84.2105 1600 1.9554 {'precision': 0.8481735159817352, 'recall': 0.9094247246022031, 'f1': 0.8777318369757826, 'number': 817} {'precision': 0.6052631578947368, 'recall': 0.5798319327731093, 'f1': 0.5922746781115881, 'number': 119} {'precision': 0.8986301369863013, 'recall': 0.9136490250696379, 'f1': 0.9060773480662985, 'number': 1077} 0.8614 0.8922 0.8765 0.7946
0.0002 94.7368 1800 1.9811 {'precision': 0.8302094818081588, 'recall': 0.9216646266829865, 'f1': 0.8735498839907193, 'number': 817} {'precision': 0.6464646464646465, 'recall': 0.5378151260504201, 'f1': 0.5871559633027523, 'number': 119} {'precision': 0.9012115563839702, 'recall': 0.8978644382544104, 'f1': 0.8995348837209303, 'number': 1077} 0.8581 0.8862 0.8719 0.7903
0.0004 105.2632 2000 1.8838 {'precision': 0.8638985005767013, 'recall': 0.9167686658506732, 'f1': 0.8895486935866984, 'number': 817} {'precision': 0.6146788990825688, 'recall': 0.5630252100840336, 'f1': 0.5877192982456141, 'number': 119} {'precision': 0.8975069252077562, 'recall': 0.9025069637883009, 'f1': 0.9, 'number': 1077} 0.8684 0.8882 0.8782 0.7991
0.0001 115.7895 2200 1.9096 {'precision': 0.856815578465063, 'recall': 0.9155446756425949, 'f1': 0.8852071005917158, 'number': 817} {'precision': 0.6203703703703703, 'recall': 0.5630252100840336, 'f1': 0.5903083700440528, 'number': 119} {'precision': 0.9028944911297853, 'recall': 0.8978644382544104, 'f1': 0.9003724394785848, 'number': 1077} 0.8684 0.8852 0.8768 0.7952
0.0001 126.3158 2400 1.8743 {'precision': 0.8584579976985041, 'recall': 0.9130966952264382, 'f1': 0.8849347568208777, 'number': 817} {'precision': 0.6363636363636364, 'recall': 0.5294117647058824, 'f1': 0.5779816513761468, 'number': 119} {'precision': 0.8976014760147601, 'recall': 0.903435468895079, 'f1': 0.9005090236001851, 'number': 1077} 0.8684 0.8852 0.8768 0.7961

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1