ruben09's picture
End of training
e2db3f5 verified
|
raw
history blame
4.27 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: emotion_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.55625

emotion_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2963
  • Accuracy: 0.5563

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0771 1.0 10 2.0698 0.1375
2.0613 2.0 20 2.0368 0.2875
2.0214 3.0 30 2.0010 0.2625
1.9314 4.0 40 1.8913 0.3
1.785 5.0 50 1.7270 0.375
1.6343 6.0 60 1.6009 0.4313
1.5327 7.0 70 1.5766 0.3937
1.452 8.0 80 1.4714 0.475
1.38 9.0 90 1.4570 0.4688
1.3061 10.0 100 1.4357 0.4688
1.2331 11.0 110 1.3691 0.4938
1.1784 12.0 120 1.3377 0.4813
1.1049 13.0 130 1.2982 0.5625
1.0938 14.0 140 1.2847 0.5188
1.0191 15.0 150 1.2630 0.575
0.9665 16.0 160 1.3427 0.4938
0.9028 17.0 170 1.3189 0.525
0.886 18.0 180 1.2599 0.5312
0.8272 19.0 190 1.3148 0.525
0.7923 20.0 200 1.2634 0.55
0.8033 21.0 210 1.2664 0.5625
0.724 22.0 220 1.2286 0.525
0.6966 23.0 230 1.3408 0.5375
0.6722 24.0 240 1.3032 0.5062
0.6816 25.0 250 1.3318 0.5062
0.6162 26.0 260 1.3775 0.4938
0.6099 27.0 270 1.2903 0.5437
0.5786 28.0 280 1.2361 0.6
0.5931 29.0 290 1.2998 0.5312
0.5849 30.0 300 1.3221 0.5062
0.5606 31.0 310 1.2756 0.5125
0.5561 32.0 320 1.3732 0.4813
0.547 33.0 330 1.3308 0.5375
0.5405 34.0 340 1.3506 0.5062
0.5419 35.0 350 1.2487 0.5625
0.5168 36.0 360 1.2269 0.525
0.5361 37.0 370 1.2993 0.55
0.5375 38.0 380 1.2806 0.575
0.5235 39.0 390 1.3404 0.5188
0.5318 40.0 400 1.3315 0.4938

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1