|
--- |
|
language: en |
|
datasets: |
|
- common_voice |
|
metrics: |
|
- wer |
|
- cer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
model-index: |
|
- name: XLSR Wav2Vec2 English by Jonatas Grosman |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice en |
|
type: common_voice |
|
args: en |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 19.18 |
|
- name: Test CER |
|
type: cer |
|
value: 8.25 |
|
--- |
|
|
|
# Wav2Vec2-Large-XLSR-53-English |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on English using the [Common Voice](https://huggingface.co/datasets/common_voice). |
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint |
|
|
|
## Usage |
|
|
|
The model can be used directly (without a language model) as follows: |
|
|
|
```python |
|
import torch |
|
import librosa |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
LANG_ID = "en" |
|
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english" |
|
SAMPLES = 10 |
|
|
|
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) |
|
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) |
|
batch["speech"] = speech_array |
|
batch["sentence"] = batch["sentence"].upper() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
predicted_sentences = processor.batch_decode(predicted_ids) |
|
|
|
for i, predicted_sentence in enumerate(predicted_sentences): |
|
print("-" * 100) |
|
print("Reference:", test_dataset[i]["sentence"]) |
|
print("Prediction:", predicted_sentence) |
|
``` |
|
|
|
| Reference | Prediction | |
|
| ------------- | ------------- | |
|
| "SHE'LL BE ALL RIGHT." | SHE'LD BE ALL RIGHT | |
|
| SIX | SIX | |
|
| "ALL'S WELL THAT ENDS WELL." | ALL IS WELL THAT ENDS WELL | |
|
| DO YOU MEAN IT? | DO YOU MEAN IT | |
|
| THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESSION | |
|
| HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? | HOWIS MOCILE ARE GOING TO HANDLE AMBIGUITIES LIKE KU AND KU | |
|
| "I GUESS YOU MUST THINK I'M KINDA BATTY." | RISSHON WAS INCAN IN THE BAK TE | |
|
| NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING | |
|
| SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. | SAUCE FOR THE GUISE IS SAUCED FOR THE GONDER | |
|
| GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. | GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD | |
|
|
|
## Evaluation |
|
|
|
The model can be evaluated as follows on the English test data of Common Voice. |
|
|
|
```python |
|
import torch |
|
import re |
|
import librosa |
|
from datasets import load_dataset, load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
LANG_ID = "en" |
|
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english" |
|
DEVICE = "cuda" |
|
|
|
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", |
|
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", |
|
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", |
|
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", |
|
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"] |
|
|
|
test_dataset = load_dataset("common_voice", LANG_ID, split="test") |
|
|
|
# uncomment the following lines to eval using other datasets |
|
# test_dataset = load_dataset("librispeech_asr", "clean", split="test") |
|
# test_dataset = load_dataset("librispeech_asr", "other", split="test") |
|
# test_dataset = load_dataset("timit_asr", split="test") |
|
|
|
wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py |
|
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py |
|
|
|
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" |
|
|
|
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) |
|
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) |
|
model.to(DEVICE) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
with warnings.catch_warnings(): |
|
warnings.simplefilter("ignore") |
|
speech_array, sampling_rate = librosa.load(batch["file"] if "file" in batch else batch["path"], sr=16_000) |
|
batch["speech"] = speech_array |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["text"] if "text" in batch else batch["sentence"]).upper() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
result = test_dataset.map(evaluate, batched=True, batch_size=8) |
|
|
|
predictions = [x.upper() for x in result["pred_strings"]] |
|
references = [x.upper() for x in result["sentence"]] |
|
|
|
print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") |
|
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") |
|
``` |
|
|
|
**Test Result**: |
|
|
|
In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-05-20). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used. |
|
|
|
--- |
|
|
|
**Common Voice** |
|
|
|
| Model | WER | CER | |
|
| ------------- | ------------- | ------------- | |
|
| jonatasgrosman/wav2vec2-large-xlsr-53-english | **19.18%** | **8.25%** | |
|
| jonatasgrosman/wav2vec2-large-english | 21.16% | 9.53% | |
|
| facebook/wav2vec2-large-960h-lv60-self | 22.03% | 10.39% | |
|
| facebook/wav2vec2-large-960h-lv60 | 23.97% | 11.14% | |
|
| facebook/wav2vec2-large-960h | 32.79% | 16.03% | |
|
| boris/xlsr-en-punctuation | 34.81% | 15.51% | |
|
| facebook/wav2vec2-base-960h | 39.86% | 19.89% | |
|
| facebook/wav2vec2-base-100h | 51.06% | 25.06% | |
|
| elgeish/wav2vec2-large-lv60-timit-asr | 59.96% | 34.28% | |
|
| facebook/wav2vec2-base-10k-voxpopuli-ft-en | 66.41% | 36.76% | |
|
| elgeish/wav2vec2-base-timit-asr | 68.78% | 36.81% | |
|
|
|
--- |
|
|
|
**LibriSpeech (clean)** |
|
|
|
| Model | WER | CER | |
|
| ------------- | ------------- | ------------- | |
|
| facebook/wav2vec2-large-960h-lv60-self | **1.86%** | **0.54%** | |
|
| facebook/wav2vec2-large-960h-lv60 | 2.15% | 0.61% | |
|
| facebook/wav2vec2-large-960h | 2.82% | 0.84% | |
|
| facebook/wav2vec2-base-960h | 3.44% | 1.06% | |
|
| facebook/wav2vec2-base-100h | 6.26% | 2.00% | |
|
| jonatasgrosman/wav2vec2-large-xlsr-53-english | 6.97% | 2.02% | |
|
| jonatasgrosman/wav2vec2-large-english | 8.00% | 2.55% | |
|
| elgeish/wav2vec2-large-lv60-timit-asr | 15.53% | 4.93% | |
|
| boris/xlsr-en-punctuation | 19.28% | 6.45% | |
|
| elgeish/wav2vec2-base-timit-asr | 29.19% | 8.38% | |
|
| facebook/wav2vec2-base-10k-voxpopuli-ft-en | 31.82% | 12.41% | |
|
|
|
--- |
|
|
|
**LibriSpeech (other)** |
|
|
|
| Model | WER | CER | |
|
| ------------- | ------------- | ------------- | |
|
| facebook/wav2vec2-large-960h-lv60-self | **3.89%** | **1.40%** | |
|
| facebook/wav2vec2-large-960h-lv60 | 4.45% | 1.56% | |
|
| facebook/wav2vec2-large-960h | 6.49% | 2.52% | |
|
| facebook/wav2vec2-base-960h | 8.90% | 3.55% | |
|
| jonatasgrosman/wav2vec2-large-xlsr-53-english | 11.75% | 4.23% | |
|
| jonatasgrosman/wav2vec2-large-english | 13.62% | 5.24% | |
|
| facebook/wav2vec2-base-100h | 13.97% | 5.51% | |
|
| boris/xlsr-en-punctuation | 26.40% | 10.11% | |
|
| elgeish/wav2vec2-large-lv60-timit-asr | 28.39% | 12.08% | |
|
| elgeish/wav2vec2-base-timit-asr | 42.04% | 15.57% | |
|
| facebook/wav2vec2-base-10k-voxpopuli-ft-en | 45.19% | 20.32% | |
|
|
|
--- |
|
|
|
**TIMIT** |
|
|
|
| Model | WER | CER | |
|
| ------------- | ------------- | ------------- | |
|
| facebook/wav2vec2-large-960h-lv60-self | **5.17%** | **1.33%** | |
|
| facebook/wav2vec2-large-960h-lv60 | 6.24% | 1.54% | |
|
| facebook/wav2vec2-large-960h | 9.63% | 2.19% | |
|
| facebook/wav2vec2-base-960h | 11.48% | 2.76% | |
|
| jonatasgrosman/wav2vec2-large-xlsr-53-english | 11.93% | 3.50% | |
|
| elgeish/wav2vec2-large-lv60-timit-asr | 13.83% | 4.36% | |
|
| jonatasgrosman/wav2vec2-large-english | 13.91% | 4.01% | |
|
| facebook/wav2vec2-base-100h | 16.75% | 4.79% | |
|
| elgeish/wav2vec2-base-timit-asr | 25.40% | 8.16% | |
|
| boris/xlsr-en-punctuation | 25.93% | 9.99% | |
|
| facebook/wav2vec2-base-10k-voxpopuli-ft-en | 51.08% | 19.84% | |
|
|