rookiemango's picture
Upload folder using huggingface_hub
32b6f1a verified
raw
history blame
42.3 kB
/-
Copyright (c) 2021 OpenAI. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kunhao Zheng, Stanislas Polu, David Renshaw, OpenAI GPT-f
! This file was ported from Lean 3 source module valid and edited by Kaiyu Yang.
-/
import MiniF2F.Minif2fImport
open BigOperators Real Nat Topology
theorem amc12a_2019_p21 (z : β„‚) (hβ‚€ : z = (1 + Complex.I) / Real.sqrt 2) :
((βˆ‘ k : β„€ in Finset.Icc 1 12, z ^ k ^ 2) * (βˆ‘ k : β„€ in Finset.Icc 1 12, 1 / z ^ k ^ 2)) = 36 := by
sorry
theorem amc12a_2015_p10 (x y : β„€) (hβ‚€ : 0 < y) (h₁ : y < x) (hβ‚‚ : x + y + x * y = 80) : x = 26 := by
sorry
theorem amc12a_2008_p8 (x y : ℝ) (hβ‚€ : 0 < x ∧ 0 < y) (h₁ : y ^ 3 = 1)
(hβ‚‚ : 6 * x ^ 2 = 2 * (6 * y ^ 2)) : x ^ 3 = 2 * Real.sqrt 2 := by
sorry
theorem mathd_algebra_182 (y : β„‚) : 7 * (3 * y + 2) = 21 * y + 14 := by
-- aesop?
ring
theorem aime_1984_p5 (a b : ℝ) (hβ‚€ : Real.logb 8 a + Real.logb 4 (b ^ 2) = 5)
(h₁ : Real.logb 8 b + Real.logb 4 (a ^ 2) = 7) : a * b = 512 := by
sorry
theorem mathd_numbertheory_780 (m x : β„€) (hβ‚€ : 0 ≀ x) (h₁ : 10 ≀ m ∧ m ≀ 99) (hβ‚‚ : 6 * x % m = 1)
(h₃ : (x - 6 ^ 2) % m = 0) : m = 43 := by
sorry
theorem mathd_algebra_116 (k x : ℝ) (hβ‚€ : x = (13 - Real.sqrt 131) / 4)
(h₁ : 2 * x ^ 2 - 13 * x + k = 0) : k = 19 / 4 := by
rw [hβ‚€] at h₁
rw [eq_comm.mp (add_eq_zero_iff_neg_eq.mp h₁)]
norm_num
rw [pow_two]
rw [mul_sub]
rw [sub_mul, sub_mul]
rw [Real.mul_self_sqrt _]
ring
linarith
theorem mathd_numbertheory_13 (u v : β„•) (S : Set β„•)
(hβ‚€ : βˆ€ n : β„•, n ∈ S ↔ 0 < n ∧ 14 * n % 100 = 46) (h₁ : IsLeast S u)
(hβ‚‚ : IsLeast (S \ {u}) v) : (u + v : β„š) / 2 = 64 := by
sorry
theorem mathd_numbertheory_169 : Nat.gcd 20! 200000 = 40000 := by
-- aesop?
apply Eq.refl
theorem amc12a_2009_p9 (a b c : ℝ) (f : ℝ β†’ ℝ) (hβ‚€ : βˆ€ x, f (x + 3) = 3 * x ^ 2 + 7 * x + 4)
(h₁ : βˆ€ x, f x = a * x ^ 2 + b * x + c) : a + b + c = 2 := by
sorry
theorem amc12a_2019_p9 (a : β„• β†’ β„š) (hβ‚€ : a 1 = 1) (h₁ : a 2 = 3 / 7)
(hβ‚‚ : βˆ€ n, a (n + 2) = a n * a (n + 1) / (2 * a n - a (n + 1))) :
↑(a 2019).den + (a 2019).num = 8078 := by
sorry
theorem mathd_algebra_13 (a b : ℝ)
(hβ‚€ : βˆ€ x, x - 3 β‰  0 ∧ x - 5 β‰  0 β†’ 4 * x / (x ^ 2 - 8 * x + 15) = a / (x - 3) + b / (x - 5)) :
a = -6 ∧ b = 10 := by
sorry
theorem induction_sum2kp1npqsqm1 (n : β„•) :
βˆ‘ k in Finset.range n, (2 * k + 3) = (n + 1) ^ 2 - 1 := by
sorry
theorem aime_1991_p6 (r : ℝ) (hβ‚€ : (βˆ‘ k in Finset.Icc (19 : β„•) 91, Int.floor (r + k / 100)) = 546) :
Int.floor (100 * r) = 743 := by
sorry
theorem mathd_numbertheory_149 :
(βˆ‘ k in Finset.filter (fun x => x % 8 = 5 ∧ x % 6 = 3) (Finset.range 50), k) = 66 := by
-- aesop?
apply Eq.refl
theorem imo_1984_p2 (a b : β„€) (hβ‚€ : 0 < a ∧ 0 < b) (h₁ : Β¬7 ∣ a) (hβ‚‚ : Β¬7 ∣ b) (h₃ : Β¬7 ∣ a + b)
(hβ‚„ : 7 ^ 7 ∣ (a + b) ^ 7 - a ^ 7 - b ^ 7) : 19 ≀ a + b := by
sorry
theorem amc12a_2008_p4 : (∏ k in Finset.Icc (1 : β„•) 501, ((4 : ℝ) * k + 4) / (4 * k)) = 502 := by
sorry
theorem imo_2006_p6 (a b c : ℝ) :
a * b * (a ^ 2 - b ^ 2) + b * c * (b ^ 2 - c ^ 2) + c * a * (c ^ 2 - a ^ 2) ≀
9 * Real.sqrt 2 / 32 * (a ^ 2 + b ^ 2 + c ^ 2) ^ 2 := by
sorry
theorem mathd_algebra_462 : ((1 : β„š) / 2 + 1 / 3) * (1 / 2 - 1 / 3) = 5 / 36 := by
-- aesop?
simp_all only [one_div]
norm_num
theorem imo_1964_p1_2 (n : β„•) : Β¬7 ∣ 2 ^ n + 1 := by
sorry
theorem mathd_numbertheory_221 (S : Finset β„•)
(hβ‚€ : βˆ€ x : β„•, x ∈ S ↔ 0 < x ∧ x < 1000 ∧ x.divisors.card = 3) : S.card = 11 := by
sorry
theorem mathd_numbertheory_64 : IsLeast { x : β„• | 30 * x ≑ 42 [MOD 47] } 39 := by
sorry
theorem imo_1987_p4 (f : β„• β†’ β„•) : βˆƒ n, f (f n) β‰  n + 1987 := by
sorry
theorem mathd_numbertheory_33 (n : β„•) (hβ‚€ : n < 398) (h₁ : n * 7 % 398 = 1) : n = 57 := by
sorry
theorem amc12_2001_p9 (f : ℝ β†’ ℝ) (hβ‚€ : βˆ€ x > 0, βˆ€ y > 0, f (x * y) = f x / y) (h₁ : f 500 = 3) :
f 600 = 5 / 2 := by
specialize hβ‚€ 500 _ (6 / 5) _
Β· linarith
Β· linarith
calc
f 600 = f (500 * (6 / 5)) := by
congr
norm_num
_ = f 500 / (6 / 5) := by rw [hβ‚€]
_ = 3 / (6 / 5) := by rw [h₁]
_ = 5 / 2 := by norm_num
-- Solution encoded in theorem statement
theorem imo_1965_p1 (x : ℝ) (hβ‚€ : 0 ≀ x) (h₁ : x ≀ 2 * Ο€)
(hβ‚‚ : 2 * Real.cos x ≀ abs (Real.sqrt (1 + Real.sin (2 * x)) - Real.sqrt (1 - Real.sin (2 * x))))
(h₃ : abs (Real.sqrt (1 + Real.sin (2 * x)) - Real.sqrt (1 - Real.sin (2 * x))) ≀ Real.sqrt 2) :
Ο€ / 4 ≀ x ∧ x ≀ 7 * Ο€ / 4 := by
sorry
theorem mathd_numbertheory_48 (b : β„•) (hβ‚€ : 0 < b) (h₁ : 3 * b ^ 2 + 2 * b + 1 = 57) : b = 4 := by
-- aesop?
simp_all only [succ.injEq]
apply le_antisymm
Β· nlinarith
Β· nlinarith
theorem numbertheory_sqmod4in01d (a : β„€) : a ^ 2 % 4 = 0 ∨ a ^ 2 % 4 = 1 := by
sorry
theorem mathd_numbertheory_466 : (βˆ‘ k in Finset.range 11, k) % 9 = 1 := by
-- aesop?
apply Eq.refl
theorem mathd_algebra_48 (q e : β„‚) (hβ‚€ : q = 9 - 4 * Complex.I) (h₁ : e = -3 - 4 * Complex.I) :
q - e = 12 := by
-- aesop?
aesop_subst [h₁, hβ‚€]
simp_all only [sub_sub_sub_cancel_right, sub_neg_eq_add]
norm_num
theorem amc12_2000_p15 (f : β„‚ β†’ β„‚) (hβ‚€ : βˆ€ x, f (x / 3) = x ^ 2 + x + 1)
(h₁ : Fintype (f ⁻¹' {7})) : (βˆ‘ y in (f ⁻¹' {7}).toFinset, y / 3) = -1 / 9 := by
sorry
theorem mathd_numbertheory_132 : 2004 % 12 = 0 := by
-- aesop?
apply Eq.refl
theorem amc12a_2009_p5 (x : ℝ) (hβ‚€ : x ^ 3 - (x + 1) * (x - 1) * x = 5) : x ^ 3 = 125 := by
sorry
theorem mathd_numbertheory_188 : Nat.gcd 180 168 = 12 := by
apply Eq.refl
theorem mathd_algebra_224 (S : Finset β„•)
(hβ‚€ : βˆ€ n : β„•, n ∈ S ↔ Real.sqrt n < 7 / 2 ∧ 2 < Real.sqrt n) : S.card = 8 := by
sorry
theorem induction_divisibility_3divnto3m2n (n : β„•) : 3 ∣ n ^ 3 + 2 * n := by
sorry
theorem induction_sum_1oktkp1 (n : β„•) :
(βˆ‘ k in Finset.range n, (1 : ℝ) / ((k + 1) * (k + 2))) = n / (n + 1) := by
sorry
theorem mathd_numbertheory_32 (S : Finset β„•) (hβ‚€ : βˆ€ n : β„•, n ∈ S ↔ n ∣ 36) : (βˆ‘ k in S, k) = 91 := by
sorry
theorem mathd_algebra_422 (x : ℝ) (Οƒ : Equiv ℝ ℝ) (hβ‚€ : βˆ€ x, Οƒ.1 x = 5 * x - 12)
(h₁ : Οƒ.1 (x + 1) = Οƒ.2 x) : x = 47 / 24 := by
sorry
theorem amc12b_2002_p11 (a b : β„•) (hβ‚€ : Nat.Prime a) (h₁ : Nat.Prime b) (hβ‚‚ : Nat.Prime (a + b))
(h₃ : Nat.Prime (a - b)) : Nat.Prime (a + b + (a - b + (a + b))) := by
sorry
theorem mathd_algebra_73 (p q r x : β„‚) (hβ‚€ : (x - p) * (x - q) = (r - p) * (r - q)) (h₁ : x β‰  r) :
x = p + q - r := by
sorry
theorem mathd_numbertheory_109 (v : β„• β†’ β„•) (hβ‚€ : βˆ€ n, v n = 2 * n - 1) :
(βˆ‘ k in Finset.Icc 1 100, v k) % 7 = 4 := by
-- aesop?
simp_all only [ge_iff_le, gt_iff_lt, lt_one_iff]
apply Eq.refl
theorem algebra_xmysqpymzsqpzmxsqeqxyz_xpypzp6dvdx3y3z3 (x y z : β„€)
(hβ‚€ : (x - y) ^ 2 + (y - z) ^ 2 + (z - x) ^ 2 = x * y * z) :
x + y + z + 6 ∣ x ^ 3 + y ^ 3 + z ^ 3 := by
sorry
-- Solution encoded in theorem statement.
-- What can be counted as a "solution"? The set of solutions is infinite. Does it have to be computable?
theorem imo_1962_p4 (S : Set ℝ)
(hβ‚€ : S = { x : ℝ | Real.cos x ^ 2 + Real.cos (2 * x) ^ 2 + Real.cos (3 * x) ^ 2 = 1 }) :
S =
{ x : ℝ |
βˆƒ m : β„€,
x = Ο€ / 2 + m * Ο€ ∨
x = Ο€ / 4 + m * Ο€ / 2 ∨ x = Ο€ / 6 + m * Ο€ / 6 ∨ x = 5 * Ο€ / 6 + m * Ο€ / 6 } := by
sorry
theorem mathd_numbertheory_236 : 1999 ^ 2000 % 5 = 1 := by
-- aesop?
apply Eq.refl
theorem mathd_numbertheory_24 : (βˆ‘ k in Finset.Icc 1 9, 11 ^ k) % 100 = 59 := by
-- aesop?
apply Eq.refl
theorem algebra_amgm_prod1toneq1_sum1tongeqn (a : β„• β†’ NNReal) (n : β„•)
(hβ‚€ : Finset.prod (Finset.range n) a = 1) : Finset.sum (Finset.range n) a β‰₯ n := by
sorry
theorem mathd_algebra_101 (x : ℝ) (hβ‚€ : x ^ 2 - 5 * x - 4 ≀ 10) : x β‰₯ -2 ∧ x ≀ 7 := by
-- aesop?
simp_all only [rpow_two, tsub_le_iff_right, ge_iff_le]
apply And.intro
Β· nlinarith
Β· nlinarith
theorem mathd_numbertheory_257 (x : β„•) (hβ‚€ : 1 ≀ x ∧ x ≀ 100)
(h₁ : 77 ∣ (βˆ‘ k in Finset.range 101, k) - x) : x = 45 := by
sorry
theorem amc12_2000_p5 (x p : ℝ) (hβ‚€ : x < 2) (h₁ : abs (x - 2) = p) : x - p = 2 - 2 * p := by
suffices abs (x - 2) = -(x - 2) by
rw [h₁] at this
linarith
apply abs_of_neg
linarith
theorem mathd_algebra_547 (x y : ℝ) (hβ‚€ : x = 5) (h₁ : y = 2) : Real.sqrt (x ^ 3 - 2 ^ y) = 11 := by
sorry
theorem mathd_numbertheory_200 : 139 % 11 = 7 := by
-- aesop?
apply Eq.refl
theorem mathd_algebra_510 (x y : ℝ) (hβ‚€ : x + y = 13) (h₁ : x * y = 24) :
Real.sqrt (x ^ 2 + y ^ 2) = 11 := by
sorry
theorem mathd_algebra_140 (a b c : ℝ) (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c)
(h₁ : βˆ€ x, 24 * x ^ 2 - 19 * x - 35 = (a * x - 5) * (2 * (b * x) + c)) : a * b - 3 * c = -9 := by
sorry
theorem mathd_algebra_455 (x : ℝ) (hβ‚€ : 2 * (2 * (2 * (2 * x))) = 48) : x = 3 := by
-- aesop?
linarith
theorem mathd_numbertheory_45 : Nat.gcd 6432 132 + 11 = 23 := by
-- aesop?
simp_all only [succ.injEq]
apply Eq.refl
theorem aime_1994_p4 (n : β„•) (hβ‚€ : 0 < n)
(hβ‚€ : (βˆ‘ k in Finset.Icc 1 n, Int.floor (Real.logb 2 k)) = 1994) : n = 312 := by
sorry
theorem mathd_numbertheory_739 : 9! % 10 = 0 := by
-- aesop?
apply Eq.refl
theorem mathd_algebra_245 (x : ℝ) (hβ‚€ : x β‰  0) :
(4 / x)⁻¹ * (3 * x ^ 3 / x) ^ 2 * (1 / (2 * x))⁻¹ ^ 3 = 18 * x ^ 8 := by
sorry
theorem algebra_apb4leq8ta4pb4 (a b : ℝ) (hβ‚€ : 0 < a ∧ 0 < b) : (a + b) ^ 4 ≀ 8 * (a ^ 4 + b ^ 4) := by
sorry
theorem mathd_algebra_28 (c : ℝ) (f : ℝ β†’ ℝ) (hβ‚€ : βˆ€ x, f x = 2 * x ^ 2 + 5 * x + c)
(h₁ : βˆƒ x, f x ≀ 0) : c ≀ 25 / 8 := by
sorry
theorem mathd_numbertheory_543 : (βˆ‘ k in Nat.divisors (30 ^ 4), 1) - 2 = 123 := by
sorry -- simp stucks
theorem mathd_algebra_480 (f : ℝ β†’ ℝ) (hβ‚€ : βˆ€ x < 0, f x = -x ^ 2 - 1)
(h₁ : βˆ€ x, 0 ≀ x ∧ x < 4 β†’ f x = 2) (hβ‚‚ : βˆ€ x β‰₯ 4, f x = Real.sqrt x) : f Ο€ = 2 := by
sorry
theorem mathd_algebra_69 (rows seats : β„•) (hβ‚€ : rows * seats = 450)
(h₁ : (rows + 5) * (seats - 3) = 450) : rows = 25 := by
sorry
theorem mathd_algebra_433 (f : ℝ β†’ ℝ) (hβ‚€ : βˆ€ x, f x = 3 * Real.sqrt (2 * x - 7) - 8) : f 8 = 19 := by
sorry
theorem mathd_algebra_126 (x y : ℝ) (hβ‚€ : 2 * 3 = x - 9) (h₁ : 2 * -5 = y + 1) : x = 15 ∧ y = -11 := by
-- aesop?
simp_all only [mul_neg]
apply And.intro
Β· linarith
Β· linarith
theorem aimeII_2020_p6 (t : β„• β†’ β„š) (hβ‚€ : t 1 = 20) (h₁ : t 2 = 21)
(hβ‚‚ : βˆ€ n β‰₯ 3, t n = (5 * t (n - 1) + 1) / (25 * t (n - 2))) :
↑(t 2020).den + (t 2020).num = 626 := by
sorry
theorem amc12a_2008_p2 (x : ℝ) (hβ‚€ : x * (1 / 2 + 2 / 3) = 1) : x = 6 / 7 := by
-- aesop?
simp_all only [one_div]
linarith
theorem mathd_algebra_35 (p q : ℝ β†’ ℝ) (hβ‚€ : βˆ€ x, p x = 2 - x ^ 2)
(h₁ : βˆ€ x : ℝ, x β‰  0 β†’ q x = 6 / x) : p (q 2) = -7 := by
-- aesop?
simp_all only [rpow_two, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, div_pow]
norm_num
theorem algebra_amgm_faxinrrp2msqrt2geq2mxm1div2x :
βˆ€ x > 0, 2 - Real.sqrt 2 β‰₯ 2 - x - 1 / (2 * x) := by
intros x h
sorry
theorem mathd_numbertheory_335 (n : β„•) (hβ‚€ : n % 7 = 5) : 5 * n % 7 = 4 := by
rw [Nat.mul_mod, hβ‚€]
theorem mathd_numbertheory_35 (S : Finset β„•) (hβ‚€ : βˆ€ n : β„•, n ∣ Nat.sqrt 196) :
(βˆ‘ k in S, k) = 24 := by
sorry
theorem amc12a_2021_p7 (x y : ℝ) : 1 ≀ (x * y - 1) ^ 2 + (x + y) ^ 2 := by
simp only [sub_eq_add_neg, add_right_comm]
ring
nlinarith
theorem mathd_algebra_327 (a : ℝ) (hβ‚€ : 1 / 5 * abs (9 + 2 * a) < 1) : -7 < a ∧ a < -2 := by
have h₁ := (mul_lt_mul_left (show 0 < (5 : ℝ) by linarith)).mpr hβ‚€
have hβ‚‚ : abs (9 + 2 * a) < 5 := by linarith
have h₃ := abs_lt.mp hβ‚‚
cases' h₃ with h₃ hβ‚„
constructor <;> nlinarith
theorem aime_1984_p15 (x y z w : ℝ)
(hβ‚€ :
x ^ 2 / (2 ^ 2 - 1) + y ^ 2 / (2 ^ 2 - 3 ^ 2) + z ^ 2 / (2 ^ 2 - 5 ^ 2) +
w ^ 2 / (2 ^ 2 - 7 ^ 2) =
1)
(h₁ :
x ^ 2 / (4 ^ 2 - 1) + y ^ 2 / (4 ^ 2 - 3 ^ 2) + z ^ 2 / (4 ^ 2 - 5 ^ 2) +
w ^ 2 / (4 ^ 2 - 7 ^ 2) =
1)
(hβ‚‚ :
x ^ 2 / (6 ^ 2 - 1) + y ^ 2 / (6 ^ 2 - 3 ^ 2) + z ^ 2 / (6 ^ 2 - 5 ^ 2) +
w ^ 2 / (6 ^ 2 - 7 ^ 2) =
1)
(h₃ :
x ^ 2 / (8 ^ 2 - 1) + y ^ 2 / (8 ^ 2 - 3 ^ 2) + z ^ 2 / (8 ^ 2 - 5 ^ 2) +
w ^ 2 / (8 ^ 2 - 7 ^ 2) =
1) :
x ^ 2 + y ^ 2 + z ^ 2 + w ^ 2 = 36 := by
sorry
theorem algebra_amgm_sqrtxymulxmyeqxpy_xpygeq4 (x y : ℝ) (hβ‚€ : 0 < x ∧ 0 < y) (h₁ : y ≀ x)
(hβ‚‚ : Real.sqrt (x * y) * (x - y) = x + y) : x + y β‰₯ 4 := by
sorry
theorem amc12a_2002_p21 (u : β„• β†’ β„•) (hβ‚€ : u 0 = 4) (h₁ : u 1 = 7)
(hβ‚‚ : βˆ€ n β‰₯ 2, u (n + 2) = (u n + u (n + 1)) % 10) :
βˆ€ n, (βˆ‘ k in Finset.range n, u k) > 10000 β†’ 1999 ≀ n := by sorry
theorem mathd_algebra_192 (q e d : β„‚) (hβ‚€ : q = 11 - 5 * Complex.I) (h₁ : e = 11 + 5 * Complex.I)
(hβ‚‚ : d = 2 * Complex.I) : q * e * d = 292 * Complex.I := by
-- aesop?
sorry
theorem amc12b_2002_p6 (a b : ℝ) (hβ‚€ : a β‰  0 ∧ b β‰  0)
(h₁ : βˆ€ x, x ^ 2 + a * x + b = (x - a) * (x - b)) : a = 1 ∧ b = -2 := by
sorry
theorem mathd_numbertheory_102 : 2 ^ 8 % 5 = 1 := by
-- aesop?
apply Eq.refl
theorem amc12a_2010_p22 (x : ℝ) : 49 ≀ βˆ‘ k:β„€ in Finset.Icc 1 119, abs (↑k * x - 1) := by
sorry
theorem mathd_numbertheory_81 : 71 % 3 = 2 := by
-- aesop?
apply Eq.refl
theorem mathd_numbertheory_155 :
Finset.card (Finset.filter (fun x => x % 19 = 7) (Finset.Icc 100 999)) = 48 := by
-- aesop?
apply Eq.refl
theorem imo_1978_p5 (n : β„•) (a : β„• β†’ β„•) (hβ‚€ : Function.Injective a) (h₁ : a 0 = 0) (hβ‚‚ : 0 < n) :
(βˆ‘ k in Finset.Icc 1 n, (1 : ℝ) / k) ≀ βˆ‘ k in Finset.Icc 1 n, (a k : ℝ) / k ^ 2 := by
sorry
theorem amc12a_2017_p7 (f : β„• β†’ ℝ) (hβ‚€ : f 1 = 2) (h₁ : βˆ€ n, 1 < n ∧ Even n β†’ f n = f (n - 1) + 1)
(hβ‚‚ : βˆ€ n, 1 < n ∧ Odd n β†’ f n = f (n - 2) + 2) : f 2017 = 2018 := by
sorry
theorem mathd_numbertheory_42 (S : Set β„•) (u v : β„•) (hβ‚€ : βˆ€ a : β„•, a ∈ S ↔ 0 < a ∧ 27 * a % 40 = 17)
(h₁ : IsLeast S u) (hβ‚‚ : IsLeast (S \ {u}) v) : u + v = 62 := by
sorry
theorem mathd_algebra_110 (q e : β„‚) (hβ‚€ : q = 2 - 2 * Complex.I) (h₁ : e = 5 + 5 * Complex.I) :
q * e = 20 := by
-- aesop?
sorry
theorem amc12b_2021_p21 (S : Finset ℝ)
(hβ‚€ : βˆ€ x : ℝ, x ∈ S ↔ 0 < x ∧ x ^ (2 : ℝ) ^ Real.sqrt 2 = Real.sqrt 2 ^ (2 : ℝ) ^ x) :
(↑2 ≀ βˆ‘ k in S, k) ∧ (βˆ‘ k in S, k) < 6 := by
sorry
theorem mathd_algebra_405 (S : Finset β„•) (hβ‚€ : βˆ€ x, x ∈ S ↔ 0 < x ∧ x ^ 2 + 4 * x + 4 < 20) :
S.card = 2 := by
sorry
theorem numbertheory_sumkmulnckeqnmul2pownm1 (n : β„•) (hβ‚€ : 0 < n) :
(βˆ‘ k in Finset.Icc 1 n, k * Nat.choose n k) = n * 2 ^ (n - 1) := by
sorry
theorem mathd_algebra_393 (Οƒ : Equiv ℝ ℝ) (hβ‚€ : βˆ€ x, Οƒ.1 x = 4 * x ^ 3 + 1) : Οƒ.2 33 = 2 := by
-- aesop?
simp_all only [Equiv.toFun_as_coe, Equiv.invFun_as_coe]
rw [Οƒ.symm_apply_eq]
simp_all only
norm_cast
theorem amc12b_2004_p3 (x y : β„•) (hβ‚€ : 2 ^ x * 3 ^ y = 1296) : x + y = 8 := by
sorry
theorem mathd_numbertheory_303 (S : Finset β„•)
(hβ‚€ : βˆ€ n : β„•, n ∈ S ↔ 2 ≀ n ∧ 171 ≑ 80 [MOD n] ∧ 468 ≑ 13 [MOD n]) : (βˆ‘ k in S, k) = 111 := by
sorry
theorem mathd_algebra_151 : Int.ceil (Real.sqrt 27) - Int.floor (Real.sqrt 26) = 1 := by
sorry
theorem amc12a_2011_p18 (x y : ℝ) (hβ‚€ : abs (x + y) + abs (x - y) = 2) :
x ^ 2 - 6 * x + y ^ 2 ≀ 8 := by
sorry
theorem mathd_algebra_15 (s : β„• β†’ β„• β†’ β„•)
(hβ‚€ : βˆ€ a b, 0 < a ∧ 0 < b β†’ s a b = a ^ (b : β„•) + b ^ (a : β„•)) : s 2 6 = 100 := by
-- aesop?
simp_all only [and_imp, zero_lt_two, zero_lt_succ]
apply Eq.refl
theorem mathd_numbertheory_211 :
Finset.card (Finset.filter (fun n => 6 ∣ 4 * ↑n - (2 : β„€)) (Finset.range 60)) = 20 := by
-- aesop?
apply Eq.refl
theorem mathd_numbertheory_640 : (91145 + 91146 + 91147 + 91148) % 4 = 2 := by
-- aesop?
apply Eq.refl
theorem amc12b_2003_p6 (a r : ℝ) (u : β„• β†’ ℝ) (hβ‚€ : βˆ€ k, u k = a * r ^ k) (h₁ : u 1 = 2)
(hβ‚‚ : u 3 = 6) : u 0 = 2 / Real.sqrt 3 ∨ u 0 = -(2 / Real.sqrt 3) := by
sorry
theorem algebra_2rootsintpoly_am10tap11eqasqpam110 (a : β„‚) :
(a - 10) * (a + 11) = a ^ 2 + a - 110 := by
-- aesop?
ring
theorem aime_1991_p1 (x y : β„•) (hβ‚€ : 0 < x ∧ 0 < y) (h₁ : x * y + (x + y) = 71)
(hβ‚‚ : x ^ 2 * y + x * y ^ 2 = 880) : x ^ 2 + y ^ 2 = 146 := by
sorry -- by simp stucks
theorem mathd_algebra_43 (a b : ℝ) (f : ℝ β†’ ℝ) (hβ‚€ : βˆ€ x, f x = a * x + b) (h₁ : f 7 = 4)
(hβ‚‚ : f 6 = 3) : f 3 = 0 := by
-- aesop?
simp_all only
linarith
theorem imo_1988_p6 (a b : β„•) (hβ‚€ : 0 < a ∧ 0 < b) (h₁ : a * b + 1 ∣ a ^ 2 + b ^ 2) :
βˆƒ x : β„•, (x ^ 2 : ℝ) = (a ^ 2 + b ^ 2) / (a * b + 1) := by
sorry
theorem aime_1996_p5 (a b c r s t : ℝ) (f g : ℝ β†’ ℝ)
(hβ‚€ : βˆ€ x, f x = x ^ 3 + 3 * x ^ 2 + 4 * x - 11) (h₁ : βˆ€ x, g x = x ^ 3 + r * x ^ 2 + s * x + t)
(hβ‚‚ : f a = 0) (h₃ : f b = 0) (hβ‚„ : f c = 0) (hβ‚… : g (a + b) = 0) (h₆ : g (b + c) = 0)
(h₇ : g (c + a) = 0) (hβ‚ˆ : List.Pairwise (Β· β‰  Β·) [a, b, c]) : t = 23 := by
sorry
theorem mathd_algebra_55 (q p : ℝ) (hβ‚€ : q = 2 - 4 + 6 - 8 + 10 - 12 + 14)
(h₁ : p = 3 - 6 + 9 - 12 + 15 - 18 + 21) : q / p = 2 / 3 := by
-- aesop?
aesop_subst [hβ‚€, h₁]
norm_num
theorem algebra_sqineq_2at2pclta2c2p41pc (a c : ℝ) :
2 * a * (2 + c) ≀ a ^ 2 + c ^ 2 + 4 * (1 + c) := by
sorry
theorem mathd_numbertheory_43 : IsGreatest { n : β„• | 15 ^ n ∣ 942! } 233 := by
sorry
theorem mathd_algebra_214 (a : ℝ) (f : ℝ β†’ ℝ) (hβ‚€ : βˆ€ x, f x = a * (x - 2) ^ 2 + 3) (h₁ : f 4 = 4) :
f 6 = 7 := by
-- aesop?
simp_all only [rpow_two]
linarith
theorem mathd_algebra_96 (x y z a : ℝ) (hβ‚€ : 0 < x ∧ 0 < y ∧ 0 < z)
(h₁ : Real.log x - Real.log y = a) (hβ‚‚ : Real.log y - Real.log z = 15)
(h₃ : Real.log z - Real.log x = -7) : a = -8 := by
-- aesop?
aesop_subst h₁
unhygienic with_reducible aesop_destruct_products
linarith
theorem amc12_2001_p2 (a b n : β„•) (hβ‚€ : 1 ≀ a ∧ a ≀ 9) (h₁ : 0 ≀ b ∧ b ≀ 9) (hβ‚‚ : n = 10 * a + b)
(h₃ : n = a * b + a + b) : b = 9 := by
rw [hβ‚‚] at h₃
simp at h₃
have hβ‚„ : 10 * a = (b + 1) * a := by linarith
simp at hβ‚„
cases' hβ‚„ with hβ‚… h₆
linarith
exfalso
simp_all [le_refl]
theorem mathd_algebra_185 (s : Finset β„€) (f : β„€ β†’ β„€) (hβ‚€ : βˆ€ x, f x = abs (x + 4))
(h₁ : βˆ€ x, x ∈ s ↔ f x < 9) : s.card = 17 := by
sorry
theorem algebra_binomnegdiscrineq_10alt28asqp1 (a : ℝ) : 10 * a ≀ 28 * a ^ 2 + 1 := by
sorry
theorem mathd_numbertheory_284 (a b : β„•) (hβ‚€ : 1 ≀ a ∧ a ≀ 9 ∧ b ≀ 9)
(h₁ : 10 * a + b = 2 * (a + b)) : 10 * a + b = 18 := by
sorry
theorem amc12a_2009_p2 : 1 + 1 / (1 + 1 / (1 + 1)) = (5 : β„š) / 3 := by
-- aesop?
simp_all only [one_div]
norm_num
theorem mathd_numbertheory_709 (n : β„•) (hβ‚€ : 0 < n) (h₁ : Finset.card (Nat.divisors (2 * n)) = 28)
(hβ‚‚ : Finset.card (Nat.divisors (3 * n)) = 30) : Finset.card (Nat.divisors (6 * n)) = 35 := by
sorry
theorem amc12a_2013_p8 (x y : ℝ) (hβ‚€ : x β‰  0) (h₁ : y β‰  0) (hβ‚‚ : x β‰  y)
(h₃ : x + 2 / x = y + 2 / y) : x * y = 2 := by
sorry
theorem mathd_numbertheory_461 (n : β„•)
(hβ‚€ : n = Finset.card (Finset.filter (fun x => Nat.gcd x 8 = 1) (Finset.Icc 1 7))) :
3 ^ n % 8 = 1 := by
-- aesop?
aesop_subst hβ‚€
apply Eq.refl
theorem mathd_algebra_59 (b : ℝ) (hβ‚€ : (4 : ℝ) ^ b + 2 ^ 3 = 12) : b = 1 := by
sorry
theorem mathd_algebra_234 (d : ℝ) (hβ‚€ : 27 / 125 * d = 9 / 25) : 3 / 5 * d ^ 3 = 25 / 9 := by
sorry
-- Solution encoded in the theorem statement.
-- The conclusion is too weak.
theorem imo_1973_p3 (a b : ℝ) (hβ‚€ : βˆƒ x, x ^ 4 + a * x ^ 3 + b * x ^ 2 + a * x + 1 = 0) :
4 / 5 ≀ a ^ 2 + b ^ 2 := by
sorry
theorem amc12b_2020_p5 (a b : β„•) (hβ‚€ : (5 : β„š) / 8 * b = 2 / 3 * a + 7)
(h₁ : (b : β„š) - 5 / 8 * b = a - 2 / 3 * a + 7) : a = 42 := by
sorry
theorem numbertheory_sqmod3in01d (a : β„€) : a ^ 2 % 3 = 0 ∨ a ^ 2 % 3 = 1 := by
sorry
theorem mathd_algebra_131 (a b : ℝ) (f : ℝ β†’ ℝ) (hβ‚€ : βˆ€ x, f x = 2 * x ^ 2 - 7 * x + 2)
(h₁ : f a = 0) (hβ‚‚ : f b = 0) (h₃ : a β‰  b) : 1 / (a - 1) + 1 / (b - 1) = -1 := by
sorry
theorem amc12b_2003_p17 (x y : ℝ) (hβ‚€ : 0 < x ∧ 0 < y) (h₁ : Real.log (x * y ^ 3) = 1)
(hβ‚‚ : Real.log (x ^ 2 * y) = 1) : Real.log (x * y) = 3 / 5 := by
sorry
theorem mathd_algebra_536 : ↑3! * ((2 : ℝ) ^ 3 + Real.sqrt 9) / 2 = (33 : ℝ) := by
sorry
theorem mathd_algebra_22 : Real.logb (5 ^ 2) (5 ^ 4) = 2 := by
sorry
theorem numbertheory_xsqpysqintdenomeq (x y : β„š) (hβ‚€ : (x ^ 2 + y ^ 2).den = 1) : x.den = y.den := by
sorry
theorem aimeII_2001_p3 (x : β„• β†’ β„€) (hβ‚€ : x 1 = 211) (hβ‚‚ : x 2 = 375) (h₃ : x 3 = 420)
(hβ‚„ : x 4 = 523) (h₆ : βˆ€ n β‰₯ 5, x n = x (n - 1) - x (n - 2) + x (n - 3) - x (n - 4)) :
x 531 + x 753 + x 975 = 898 := by
sorry
theorem mathd_numbertheory_22 (b : β„•) (hβ‚€ : b < 10)
(h₁ : Nat.sqrt (10 * b + 6) * Nat.sqrt (10 * b + 6) = 10 * b + 6) : b = 3 ∨ b = 1 := by
sorry
theorem aime_1987_p8 :
IsGreatest { n : β„• | 0 < n ∧ βˆƒ! k : β„•, (8 : ℝ) / 15 < n / (n + k) ∧ (n : ℝ) / (n + k) < 7 / 13 } 112 := by
sorry
theorem mathd_numbertheory_136 (n : β„•) (hβ‚€ : 123 * n + 17 = 39500) : n = 321 := by
-- aesop?
simp_all only [succ.injEq]
linarith
theorem amc12_2000_p11 (a b : ℝ) (hβ‚€ : a β‰  0 ∧ b β‰  0) (h₁ : a * b = a - b) :
a / b + b / a - a * b = 2 := by
field_simp [hβ‚€.1, hβ‚€.2]
simp only [h₁, mul_comm, mul_sub]
ring
theorem amc12b_2003_p9 (a b : ℝ) (f : ℝ β†’ ℝ) (hβ‚€ : βˆ€ x, f x = a * x + b) (h₁ : f 6 - f 2 = 12) :
f 12 - f 2 = 30 := by
-- aesop?
simp_all only [add_sub_add_right_eq_sub]
linarith
theorem algebra_2complexrootspoly_xsqp49eqxp7itxpn7i (x : β„‚) :
x ^ 2 + 49 = (x + 7 * Complex.I) * (x + -7 * Complex.I) := by
-- aesop?
simp_all only [Complex.cpow_two, neg_mul]
ring
simp_all only [Complex.I_sq, neg_mul, one_mul, sub_neg_eq_add]
ring
theorem mathd_numbertheory_198 : 5 ^ 2005 % 100 = 25 := by
-- aesop?
apply Eq.refl
theorem mathd_algebra_149 (f : ℝ β†’ ℝ) (hβ‚€ : βˆ€ x < -5, f x = x ^ 2 + 5)
(h₁ : βˆ€ x β‰₯ -5, f x = 3 * x - 8) (hβ‚‚ : Fintype (f ⁻¹' {10})) :
(βˆ‘ k in (f ⁻¹' {10}).toFinset, k) = 6 := by
sorry
theorem mathd_algebra_132 (x : ℝ) (f g : ℝ β†’ ℝ) (hβ‚€ : βˆ€ x, f x = x + 2) (h₁ : βˆ€ x, g x = x ^ 2)
(hβ‚‚ : f (g x) = g (f x)) : x = -1 / 2 := by
-- aesop?
simp_all only [rpow_two]
linarith
theorem mathd_numbertheory_37 : Nat.lcm 9999 100001 = 90900909 := by
-- aesop?
apply Eq.refl
theorem aime_1983_p9 (x : ℝ) (hβ‚€ : 0 < x ∧ x < Real.pi) :
12 ≀ (9 * (x ^ 2 * Real.sin x ^ 2) + 4) / (x * Real.sin x) := by
sorry
theorem mathd_algebra_37 (x y : ℝ) (hβ‚€ : x + y = 7) (h₁ : 3 * x + y = 45) : x ^ 2 - y ^ 2 = 217 := by
sorry
theorem mathd_numbertheory_458 (n : β„•) (hβ‚€ : n % 8 = 7) : n % 4 = 3 := by
sorry
theorem amc12a_2008_p15 (k : β„•) (hβ‚€ : k = 2008 ^ 2 + 2 ^ 2008) : (k ^ 2 + 2 ^ k) % 10 = 6 := by
sorry
theorem mathd_numbertheory_301 (j : β„•) (hβ‚€ : 0 < j) : 3 * (7 * ↑j + 3) % 7 = 2 := by
calc
3 * (7 * ↑j + 3) % 7 = (3 * 3 + 3 * ↑j * 7) % 7 := by ring_nf
_ = 3 * 3 % 7 := by apply Nat.add_mul_mod_self_right
_ = 2 := by norm_num
theorem amc12a_2009_p15 (n : β„•) (hβ‚€ : 0 < n)
(h₁ : (βˆ‘ k in Finset.Icc 1 n, ↑k * Complex.I ^ k) = 48 + 49 * Complex.I) : n = 97 := by
sorry
theorem algebra_sqineq_36azm9asqle36zsq (z a : ℝ) : 36 * (a * z) - 9 * a ^ 2 ≀ 36 * z ^ 2 := by
sorry
theorem amc12a_2013_p7 (s : β„• β†’ ℝ) (hβ‚€ : βˆ€ n, s (n + 2) = s (n + 1) + s n) (h₁ : s 9 = 110)
(hβ‚‚ : s 7 = 42) : s 4 = 10 := by
-- aesop?
simp_all only [zero_add]
linarith
theorem mathd_algebra_104 (x : ℝ) (hβ‚€ : 125 / 8 = x / 12) : x = 375 / 2 := by
-- aesop?
linarith
theorem mathd_numbertheory_252 : 7! % 23 = 3 := by
-- aesop?
apply Eq.refl
theorem amc12a_2020_p21 (S : Finset β„•)
(hβ‚€ : βˆ€ n : β„•, n ∈ S ↔ 5 ∣ n ∧ Nat.lcm 5! n = 5 * Nat.gcd 10! n) : S.card = 48 := by
sorry
theorem mathd_algebra_493 (f : ℝ β†’ ℝ) (hβ‚€ : βˆ€ x, f x = x ^ 2 - 4 * Real.sqrt x + 1) :
f (f 4) = 70 := by
sorry
theorem numbertheory_nckeqnm1ckpnm1ckm1 (n k : β„•) (hβ‚€ : 0 < n ∧ 0 < k) (h₁ : k ≀ n) :
Nat.choose n k = Nat.choose (n - 1) k + Nat.choose (n - 1) (k - 1) := by
sorry
theorem algebra_3rootspoly_amdtamctambeqnasqmbpctapcbtdpasqmbpctapcbta (b c d a : β„‚) :
(a - d) * (a - c) * (a - b) =
-((a ^ 2 - (b + c) * a + c * b) * d) + (a ^ 2 - (b + c) * a + c * b) * a := by
-- TODO: `aesop` stucks here but `suggest_tactics` works
ring
theorem mathd_numbertheory_403 : (βˆ‘ k in Nat.properDivisors 198, k) = 270 := by
-- aesop?
apply Eq.refl
theorem mathd_algebra_190 : ((3 : ℝ) / 8 + 7 / 8) / (4 / 5) = 25 / 16 := by
-- aesop?
norm_num
theorem mathd_numbertheory_269 : (2005 ^ 2 + 2005 ^ 0 + 2005 ^ 0 + 2005 ^ 5) % 100 = 52 := by
-- aesop?
simp_all only [_root_.pow_zero]
apply Eq.refl
theorem aime_1990_p2 :
(52 + 6 * Real.sqrt 43) ^ ((3 : ℝ) / 2) - (52 - 6 * Real.sqrt 43) ^ ((3 : ℝ) / 2) = 828 := by
sorry -- aesop stucks
theorem mathd_numbertheory_101 : 17 * 18 % 4 = 2 := by
-- aesop?
apply Eq.refl
theorem algebra_sqineq_4bap1lt4bsqpap1sq (a b : ℝ) : 4 * b * (a + 1) ≀ 4 * b ^ 2 + (a + 1) ^ 2 := by
sorry
theorem mathd_numbertheory_156 (n : β„•) (hβ‚€ : 0 < n) : Nat.gcd (n + 7) (2 * n + 1) ≀ 13 := by
sorry
theorem mathd_algebra_451 (Οƒ : Equiv ℝ ℝ) (hβ‚€ : Οƒ.2 (-15) = 0) (h₁ : Οƒ.2 0 = 3) (hβ‚‚ : Οƒ.2 3 = 9)
(h₃ : Οƒ.2 9 = 20) : Οƒ.1 (Οƒ.1 9) = 0 := by
simp only [Equiv.invFun_as_coe, eq_comm] at hβ‚€ h₁ hβ‚‚ h₃
simp only [Equiv.toFun_as_coe]
rw [← Equiv.apply_eq_iff_eq_symm_apply Οƒ] at hβ‚‚
rw [← Equiv.apply_eq_iff_eq_symm_apply Οƒ] at h₁
have hβ‚„ := (Equiv.apply_eq_iff_eq Οƒ).mpr hβ‚‚
rw [h₁] at hβ‚„
exact hβ‚„
theorem mathd_algebra_144 (a b c d : β„•) (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d) (hβ‚€ : (c : β„€) - b = d)
(h₁ : (b : β„€) - a = d) (hβ‚‚ : a + b + c = 60) (h₃ : a + b > c) : d < 10 := by
-- aesop?
rename_i hβ‚€_1
simp_all only [gt_iff_lt]
unhygienic with_reducible aesop_destruct_products
linarith
theorem mathd_algebra_282 (f : ℝ β†’ ℝ) (hβ‚€ : βˆ€ x : ℝ, Β¬ (Irrational x) β†’ f x = abs (Int.floor x))
(h₁ : βˆ€ x, Irrational x β†’ f x = (Int.ceil x) ^ 2) :
f (8 ^ (1 / 3)) + f (-Real.pi) + f (Real.sqrt 50) + f (9 / 2) = 79 := by
sorry
theorem mathd_algebra_410 (x y : ℝ) (hβ‚€ : y = x ^ 2 - 6 * x + 13) : 4 ≀ y := by
sorry
theorem mathd_numbertheory_232 (x y z : ZMod 31) (hβ‚€ : x = 3⁻¹) (h₁ : y = 5⁻¹)
(hβ‚‚ : z = (x + y)⁻¹) : z = 29 := by
-- aesop?
aesop_subst [hβ‚‚, h₁, hβ‚€]
apply Eq.refl
theorem mathd_algebra_77 (a b : ℝ) (f : ℝ β†’ ℝ) (hβ‚€ : a β‰  0 ∧ b β‰  0) (h₁ : a β‰  b)
(hβ‚‚ : βˆ€ x, f x = x ^ 2 + a * x + b) (h₃ : f a = 0) (hβ‚„ : f b = 0) : a = 1 ∧ b = -2 := by
sorry
-- Solution encoded in the theorem statement.
-- The conclusion is too weak. It doesn't show s can be any number in [1, 2]
theorem imo_1974_p5 (a b c d s : ℝ) (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d)
(h₁ : s = a / (a + b + d) + b / (a + b + c) + c / (b + c + d) + d / (a + c + d)) :
1 < s ∧ s < 2 := by
sorry
theorem aime_1988_p3 (x : ℝ) (hβ‚€ : 0 < x)
(h₁ : Real.logb 2 (Real.logb 8 x) = Real.logb 8 (Real.logb 2 x)) : Real.logb 2 x ^ 2 = 27 := by
sorry
theorem mathd_numbertheory_530 (n k : β„•) (hβ‚€ : 0 < n ∧ 0 < k) (hβ‚€ : (n : ℝ) / k < 6)
(h₁ : (5 : ℝ) < n / k) : 22 ≀ Nat.lcm n k / Nat.gcd n k := by
sorry
theorem mathd_algebra_109 (a b : ℝ) (hβ‚€ : 3 * a + 2 * b = 12) (h₁ : a = 4) : b = 0 := by
-- aesop?
aesop_subst h₁
linarith
theorem imo_1967_p3 (k m n : β„•) (c : β„• β†’ β„•) (hβ‚€ : 0 < k ∧ 0 < m ∧ 0 < n)
(h₁ : βˆ€ s, c s = s * (s + 1)) (hβ‚‚ : Nat.Prime (k + m + 1)) (h₃ : n + 1 < k + m + 1) :
(∏ i in Finset.Icc 1 n, c i) ∣ ∏ i in Finset.Icc 1 n, c (m + i) - c k := by
sorry
theorem mathd_algebra_11 (a b : ℝ) (hβ‚€ : a β‰  b) (h₁ : a β‰  2 * b)
(hβ‚‚ : (4 * a + 3 * b) / (a - 2 * b) = 5) : (a + 11 * b) / (a - b) = 2 := by
sorry
theorem amc12a_2003_p1 (u v : β„• β†’ β„•) (hβ‚€ : βˆ€ n, u n = 2 * n + 2) (h₁ : βˆ€ n, v n = 2 * n + 1) :
((βˆ‘ k in Finset.range 2003, u k) - βˆ‘ k in Finset.range 2003, v k) = 2003 := by
-- aesop?
simp_all only [ge_iff_le]
rfl
theorem numbertheory_aneqprodakp4_anmsqrtanp1eq2 (a : β„• β†’ ℝ) (hβ‚€ : a 0 = 1)
(h₁ : βˆ€ n, a (n + 1) = (∏ k in Finset.range (n + 1), a k) + 4) :
βˆ€ n β‰₯ 1, a n - Real.sqrt (a (n + 1)) = 2 := by
sorry
theorem algebra_2rootspoly_apatapbeq2asqp2ab (a b : β„‚) :
(a + a) * (a + b) = 2 * a ^ 2 + 2 * (a * b) := by
-- aesop?
ring
theorem induction_sum_odd (n : β„•) : (βˆ‘ k in Finset.range n, 2 * k) + 1 = n ^ 2 := by
sorry
theorem mathd_algebra_568 (a : ℝ) :
(a - 1) * (a + 1) * (a + 2) - (a - 2) * (a + 1) = a ^ 3 + a ^ 2 := by
-- aesop?
ring
theorem mathd_algebra_616 (f g : ℝ β†’ ℝ) (hβ‚€ : βˆ€ x, f x = x ^ 3 + 2 * x + 1)
(h₁ : βˆ€ x, g x = x - 1) : f (g 1) = 1 := by
-- aesop?
simp_all
theorem mathd_numbertheory_690 :
IsLeast { a : β„• | 0 < a ∧ a ≑ 2 [MOD 3] ∧ a ≑ 4 [MOD 5] ∧ a ≑ 6 [MOD 7] ∧ a ≑ 8 [MOD 9] } 314 := by
sorry
theorem amc12a_2016_p2 (x : ℝ) (hβ‚€ : (10 : ℝ) ^ x * 100 ^ (2 * x) = 1000 ^ 5) : x = 3 := by
sorry
theorem mathd_numbertheory_405 (a b c : β„•) (t : β„• β†’ β„•) (hβ‚€ : t 0 = 0) (h₁ : t 1 = 1)
(hβ‚‚ : βˆ€ n > 1, t n = t (n - 2) + t (n - 1)) (h₃ : a ≑ 5 [MOD 16]) (hβ‚„ : b ≑ 10 [MOD 16])
(hβ‚… : c ≑ 15 [MOD 16]) : (t a + t b + t c) % 7 = 5 := by
sorry
theorem mathd_numbertheory_110 (a b : β„•) (hβ‚€ : 0 < a ∧ 0 < b ∧ b ≀ a) (h₁ : (a + b) % 10 = 2)
(hβ‚‚ : (2 * a + b) % 10 = 1) : (a - b) % 10 = 6 := by
sorry
theorem amc12a_2003_p25 (a b : ℝ) (f : ℝ β†’ ℝ) (hβ‚€ : 0 < b)
(h₁ : βˆ€ x, f x = Real.sqrt (a * x ^ 2 + b * x)) (hβ‚‚ : { x | 0 ≀ f x } = f '' { x | 0 ≀ f x }) :
a = 0 ∨ a = -4 := by
sorry
theorem amc12a_2010_p10 (p q : ℝ) (a : β„• β†’ ℝ) (hβ‚€ : βˆ€ n, a (n + 2) - a (n + 1) = a (n + 1) - a n)
(h₁ : a 1 = p) (hβ‚‚ : a 2 = 9) (h₃ : a 3 = 3 * p - q) (hβ‚„ : a 4 = 3 * p + q) : a 2010 = 8041 := by
sorry
theorem mathd_algebra_509 :
Real.sqrt ((5 / Real.sqrt 80 + Real.sqrt 845 / 9 + Real.sqrt 45) / Real.sqrt 5) = 13 / 6 := by
sorry
theorem mathd_algebra_159 (b : ℝ) (f : ℝ β†’ ℝ)
(hβ‚€ : βˆ€ x, f x = 3 * x ^ 4 - 7 * x ^ 3 + 2 * x ^ 2 - b * x + 1) (h₁ : f 1 = 1) : b = -2 := by
-- aesop?
simp_all only [rpow_two, one_rpow, mul_one, one_pow, add_left_eq_self]
linarith
theorem aime_1997_p11 (x : ℝ)
(hβ‚€ :
x =
(βˆ‘ n in Finset.Icc (1 : β„•) 44, Real.cos (n * Ο€ / 180)) /
βˆ‘ n in Finset.Icc (1 : β„•) 44, Real.sin (n * Ο€ / 180)) :
Int.floor (100 * x) = 241 := by
sorry
theorem aimeI_2000_p7 (x y z : ℝ) (m : β„š) (hβ‚€ : 0 < x ∧ 0 < y ∧ 0 < z) (h₁ : x * y * z = 1)
(hβ‚‚ : x + 1 / z = 5) (h₃ : y + 1 / x = 29) (hβ‚„ : z + 1 / y = m) (hβ‚… : 0 < m) :
↑m.den + m.num = 5 := by
sorry
theorem aime_1988_p4 (n : β„•) (a : β„• β†’ ℝ) (hβ‚€ : βˆ€ n, abs (a n) < 1)
(h₁ : (βˆ‘ k in Finset.range n, abs (a k)) = 19 + abs (βˆ‘ k in Finset.range n, a k)) : 20 ≀ n := by
sorry
theorem induction_divisibility_9div10tonm1 (n : β„•) (hβ‚€ : 0 < n) : 9 ∣ 10 ^ n - 1 := by
sorry
theorem mathd_numbertheory_126 (x a : β„•) (hβ‚€ : 0 < x ∧ 0 < a) (h₁ : Nat.gcd a 40 = x + 3)
(hβ‚‚ : Nat.lcm a 40 = x * (x + 3))
(h₃ : βˆ€ b : β„•, 0 < b β†’ Nat.gcd b 40 = x + 3 ∧ Nat.lcm b 40 = x * (x + 3) β†’ a ≀ b) : a = 8 := by
sorry
theorem mathd_algebra_323 (Οƒ : Equiv ℝ ℝ) (h : βˆ€ x, Οƒ.1 x = x ^ 3 - 8) : Οƒ.2 (Οƒ.1 (Οƒ.2 19)) = 3 := by
sorry
theorem mathd_algebra_421 (a b c d : ℝ) (hβ‚€ : b = a ^ 2 + 4 * a + 6)
(h₁ : b = 1 / 2 * a ^ 2 + a + 6) (hβ‚‚ : d = c ^ 2 + 4 * c + 6) (h₃ : d = 1 / 2 * c ^ 2 + c + 6)
(hβ‚„ : a < c) : c - a = 6 := by
sorry
theorem imo_1987_p6 (p : β„•) (f : β„• β†’ β„•) (hβ‚€ : βˆ€ x, f x = x ^ 2 + x + p)
(hβ‚€ : βˆ€ k : β„•, k ≀ Nat.floor (Real.sqrt (p / 3)) β†’ Nat.Prime (f k)) :
βˆ€ i ≀ p - 2, Nat.Prime (f i) := by
sorry
theorem amc12a_2009_p25 (a : β„• β†’ ℝ) (hβ‚€ : a 1 = 1) (h₁ : a 2 = 1 / Real.sqrt 3)
(hβ‚‚ : βˆ€ n, 1 ≀ n β†’ a (n + 2) = (a n + a (n + 1)) / (1 - a n * a (n + 1))) : abs (a 2009) = 0 := by
sorry
-- Geometry probem that shouldn't be formalized like this.
theorem imo_1961_p1 (x y z a b : ℝ) (hβ‚€ : 0 < x ∧ 0 < y ∧ 0 < z) (h₁ : x β‰  y) (hβ‚‚ : y β‰  z)
(h₃ : z β‰  x) (hβ‚„ : x + y + z = a) (hβ‚… : x ^ 2 + y ^ 2 + z ^ 2 = b ^ 2) (h₆ : x * y = z ^ 2) :
0 < a ∧ b ^ 2 < a ^ 2 ∧ a ^ 2 < 3 * b ^ 2 := by
sorry -- aesop stucks
theorem mathd_algebra_31 (x : NNReal) (u : β„• β†’ NNReal) (hβ‚€ : βˆ€ n, u (n + 1) = NNReal.sqrt (x + u n))
(h₁ : Filter.Tendsto u Filter.atTop (𝓝 9)) : 9 = NNReal.sqrt (x + 9) := by
sorry
theorem algebra_manipexpr_apbeq2cceqiacpbceqm2 (a b c : β„‚) (hβ‚€ : a + b = 2 * c)
(h₁ : c = Complex.I) : a * c + b * c = -2 := by
rw [← add_mul, hβ‚€, h₁, mul_assoc, Complex.I_mul_I]
ring
theorem mathd_numbertheory_370 (n : β„•) (hβ‚€ : n % 7 = 3) : (2 * n + 1) % 7 = 0 := by
sorry
theorem mathd_algebra_437 (x y : ℝ) (n : β„€) (hβ‚€ : x ^ 3 = -45) (h₁ : y ^ 3 = -101) (hβ‚‚ : x < n)
(h₃ : ↑n < y) : n = -4 := by
sorry
-- Solution encoded in the theorem statement.
-- Conclusion too weak. It doesn't show "if and only if"
theorem imo_1966_p5 (x a : β„• β†’ ℝ) (hβ‚€ : a 1 β‰  a 2) (h₁ : a 1 β‰  a 3) (hβ‚‚ : a 1 β‰  a 4)
(h₃ : a 2 β‰  a 3) (hβ‚„ : a 2 β‰  a 4) (hβ‚… : a 3 β‰  a 4) (h₆ : a 1 > a 2) (h₇ : a 2 > a 3)
(hβ‚ˆ : a 3 > a 4)
(h₉ : abs (a 1 - a 2) * x 2 + abs (a 1 - a 3) * x 3 + abs (a 1 - a 4) * x 4 = 1)
(h₁₀ : abs (a 2 - a 1) * x 1 + abs (a 2 - a 3) * x 3 + abs (a 2 - a 4) * x 4 = 1)
(h₁₁ : abs (a 3 - a 1) * x 1 + abs (a 3 - a 2) * x 2 + abs (a 3 - a 4) * x 4 = 1)
(h₁₂ : abs (a 4 - a 1) * x 1 + abs (a 4 - a 2) * x 2 + abs (a 4 - a 3) * x 3 = 1) :
x 2 = 0 ∧ x 3 = 0 ∧ x 1 = 1 / abs (a 1 - a 4) ∧ x 4 = 1 / abs (a 1 - a 4) := by
sorry
theorem mathd_algebra_89 (b : ℝ) (hβ‚€ : b β‰  0) :
(7 * b ^ 3) ^ 2 * (4 * b ^ 2) ^ (-(3 : β„€)) = 49 / 64 := by
sorry
theorem imo_1966_p4 (n : β„•) (x : ℝ) (hβ‚€ : βˆ€ k : β„•, 0 < k β†’ βˆ€ m : β„€, x β‰  m * Ο€ / 2 ^ k)
(h₁ : 0 < n) :
(βˆ‘ k in Finset.Icc 1 n, 1 / Real.sin (2 ^ k * x)) = 1 / Real.tan x - 1 / Real.tan (2 ^ n * x) := by
sorry
theorem mathd_algebra_67 (f g : ℝ β†’ ℝ) (hβ‚€ : βˆ€ x, f x = 5 * x + 3) (h₁ : βˆ€ x, g x = x ^ 2 - 2) :
g (f (-1)) = 2 := by
-- aesop?
simp_all only [rpow_two, mul_neg, mul_one]
norm_num
theorem mathd_numbertheory_326 (n : β„€) (hβ‚€ : (n - 1) * n * (n + 1) = 720 ) : n + 1 = 10 := by
sorry
theorem induction_divisibility_3div2tooddnp1 (n : β„•) : 3 ∣ 2 ^ (2 * n + 1) + 1 := by
sorry
theorem mathd_algebra_123 (a b : β„•) (hβ‚€ : 0 < a ∧ 0 < b) (h₁ : a + b = 20) (hβ‚‚ : a = 3 * b) :
a - b = 10 := by
sorry
theorem algebra_2varlineareq_xpeeq7_2xpeeq3_eeq11_xeqn4 (x e : β„‚) (hβ‚€ : x + e = 7)
(h₁ : 2 * x + e = 3) : e = 11 ∧ x = -4 := by
sorry
theorem imo_1993_p5 : βˆƒ f : β„• β†’ β„•, f 1 = 2 ∧ βˆ€ n, f (f n) = f n + n ∧ βˆ€ n, f n < f (n + 1) := by
sorry
theorem numbertheory_prmdvsneqnsqmodpeq0 (n : β„€) (p : β„•) (hβ‚€ : Nat.Prime p) :
↑p ∣ n ↔ n ^ 2 % p = 0 := by
sorry
theorem imo_1964_p1_1 (n : β„•) (hβ‚€ : 7 ∣ 2 ^ n - 1) : 3 ∣ n := by
sorry
theorem imo_1990_p3 (n : β„•) (hβ‚€ : 2 ≀ n) (h₁ : n ^ 2 ∣ 2 ^ n + 1) : n = 3 := by
sorry
theorem induction_ineq_nsqlefactn (n : β„•) (hβ‚€ : 4 ≀ n) : n ^ 2 ≀ n ! := by
sorry
theorem mathd_numbertheory_30 :
(33818 ^ 2 + 33819 ^ 2 + 33820 ^ 2 + 33821 ^ 2 + 33822 ^ 2) % 17 = 0 := by
-- aesop?
apply Eq.refl
theorem mathd_algebra_267 (x : ℝ) (hβ‚€ : x β‰  1) (h₁ : x β‰  -2)
(hβ‚‚ : (x + 1) / (x - 1) = (x - 2) / (x + 2)) : x = 0 := by
sorry
theorem mathd_numbertheory_961 : 2003 % 11 = 1 := by
-- aesop?
apply Eq.refl
theorem induction_seq_mul2pnp1 (n : β„•) (u : β„• β†’ β„•) (hβ‚€ : u 0 = 0)
(h₁ : βˆ€ n, u (n + 1) = 2 * u n + (n + 1)) : u n = 2 ^ (n + 1) - (n + 2) := by
sorry
theorem amc12a_2002_p12 (f : ℝ β†’ ℝ) (k : ℝ) (a b : β„•) (hβ‚€ : βˆ€ x, f x = x ^ 2 - 63 * x + k)
(h₁ : f a = 0 ∧ f b = 0) (hβ‚‚ : a β‰  b) (h₃ : Nat.Prime a ∧ Nat.Prime b) : k = 122 := by
sorry
theorem algebra_manipexpr_2erprsqpesqeqnrpnesq (e r : β„‚) :
2 * (e * r) + (e ^ 2 + r ^ 2) = (-r + -e) ^ 2 := by
-- aesop?
ring
theorem mathd_algebra_119 (d e : ℝ) (hβ‚€ : 2 * d = 17 * e - 8) (h₁ : 2 * e = d - 9) : e = 2 := by
-- aesop?
linarith
theorem amc12a_2020_p13 (a b c : β„•) (n : NNReal) (hβ‚€ : n β‰  1) (h₁ : 1 < a ∧ 1 < b ∧ 1 < c)
(hβ‚‚ : (n * (n * n ^ (1 / c)) ^ (1 / b)) ^ (1 / a) = (n ^ 25) ^ (1 / 36)) : b = 3 := by
sorry
-- Solution encoded in the theorem statement.
-- The conclusion is too weak. It doesn't prevent other solutions.
theorem imo_1977_p5 (a b q r : β„•) (hβ‚€ : r < a + b) (h₁ : a ^ 2 + b ^ 2 = (a + b) * q + r)
(hβ‚‚ : q ^ 2 + r = 1977) :
abs ((a : β„€) - 22) = 15 ∧ abs ((b : β„€) - 22) = 28 ∨
abs ((a : β„€) - 22) = 28 ∧ abs ((b : β„€) - 22) = 15 := by
sorry
theorem numbertheory_2dvd4expn (n : β„•) (hβ‚€ : n β‰  0) : 2 ∣ 4 ^ n := by
revert n hβ‚€
rintro ⟨k, rfl⟩
Β· norm_num
apply dvd_pow
norm_num
theorem amc12a_2010_p11 (x b : ℝ) (hβ‚€ : 0 < b) (h₁ : (7 : ℝ) ^ (x + 7) = 8 ^ x)
(hβ‚‚ : x = Real.logb b (7 ^ 7)) : b = 8 / 7 := by
sorry
theorem amc12a_2003_p24 :
IsGreatest { y : ℝ | βˆƒ a b : ℝ, 1 < b ∧ b ≀ a ∧ y = Real.logb a (a / b) + Real.logb b (b / a) }
0 := by
sorry
theorem amc12a_2002_p1 (f : β„‚ β†’ β„‚) (hβ‚€ : βˆ€ x, f x = (2 * x + 3) * (x - 4) + (2 * x + 3) * (x - 6))
(h₁ : Fintype (f ⁻¹' {0})) : (βˆ‘ y in (f ⁻¹' {0}).toFinset, y) = 7 / 2 := by
sorry
theorem mathd_algebra_206 (a b : ℝ) (f : ℝ β†’ ℝ) (hβ‚€ : βˆ€ x, f x = x ^ 2 + a * x + b) (h₁ : 2 * a β‰  b)
(hβ‚‚ : f (2 * a) = 0) (h₃ : f b = 0) : a + b = -1 := by
sorry
theorem mathd_numbertheory_92 (n : β„•) (hβ‚€ : 5 * n % 17 = 8) : n % 17 = 5 := by
sorry
theorem mathd_algebra_482 (m n : β„•) (k : ℝ) (f : ℝ β†’ ℝ) (hβ‚€ : Nat.Prime m) (h₁ : Nat.Prime n)
(hβ‚‚ : βˆ€ x, f x = x ^ 2 - 12 * x + k) (h₃ : f m = 0) (hβ‚„ : f n = 0) (hβ‚… : m β‰  n) : k = 35 := by
sorry
theorem amc12b_2002_p3 (S : Finset β„•)
-- note: we use (n^2 + 2 - 3 * n) over (n^2 - 3 * n + 2) because nat subtraction truncates the latter at 1 and 2
(hβ‚€ : βˆ€ n : β„•, n ∈ S ↔ 0 < n ∧ Nat.Prime (n ^ 2 + 2 - 3 * n)) :
S.card = 1 := by
sorry
theorem mathd_numbertheory_668 (l r : ZMod 7) (hβ‚€ : l = (2 + 3)⁻¹) (h₁ : r = 2⁻¹ + 3⁻¹) :
l - r = 1 := by
-- aesop?
aesop_subst [h₁, hβ‚€]
apply Eq.refl
theorem mathd_algebra_251 (x : ℝ) (hβ‚€ : x β‰  0) (h₁ : 3 + 1 / x = 7 / x) : x = 2 := by
-- aesop?
simp_all only [ne_eq, one_div]
field_simp [hβ‚€] at h₁
linarith
theorem mathd_numbertheory_84 : Int.floor ((9 : ℝ) / 160 * 100) = 5 := by
rw [Int.floor_eq_iff]
constructor
all_goals norm_num
theorem mathd_numbertheory_412 (x y : β„€) (hβ‚€ : x % 19 = 4) (h₁ : y % 19 = 7) :
(x + 1) ^ 2 * (y + 5) ^ 3 % 19 = 13 := by
sorry
theorem mathd_algebra_181 (n : ℝ) (hβ‚€ : n β‰  3) (h₁ : (n + 5) / (n - 3) = 2) : n = 11 := by
rw [div_eq_iff] at h₁
linarith
exact sub_ne_zero.mpr hβ‚€
/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (y Β«expr β‰  Β» 0) -/
theorem amc12a_2016_p3 (f : ℝ β†’ ℝ β†’ ℝ)
(hβ‚€ : βˆ€ x, βˆ€ (y) (_ : y β‰  0), f x y = x - y * Int.floor (x / y)) :
f (3 / 8) (-(2 / 5)) = -(1 / 40) := by
sorry
/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (n Β«expr = Β» 3) -/
theorem mathd_algebra_247 (t s : ℝ) (n : β„€) (hβ‚€ : t = 2 * s - s ^ 2) (h₁ : s = n ^ 2 - 2 ^ n + 1)
(n) (_ : n = 3) : t = 0 := by
sorry
theorem algebra_sqineq_2unitcircatblt1 (a b : ℝ) (hβ‚€ : a ^ 2 + b ^ 2 = 2) : a * b ≀ 1 := by
sorry
theorem mathd_numbertheory_629 : IsLeast { t : β„• | 0 < t ∧ Nat.lcm 12 t ^ 3 = (12 * t) ^ 2 } 18 :=
by sorry
theorem amc12a_2017_p2 (x y : ℝ) (hβ‚€ : x β‰  0) (h₁ : y β‰  0) (hβ‚‚ : x + y = 4 * (x * y)) :
1 / x + 1 / y = 4 := by
-- aesop?
simp_all only [ne_eq, one_div]
field_simp
rwa [add_comm]
theorem algebra_amgm_sumasqdivbsqgeqsumbdiva (a b c : ℝ) (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c) :
a ^ 2 / b ^ 2 + b ^ 2 / c ^ 2 + c ^ 2 / a ^ 2 β‰₯ b / a + c / b + a / c := by
sorry
theorem mathd_numbertheory_202 : (19 ^ 19 + 99 ^ 99) % 10 = 8 := by
-- aesop?
apply Eq.refl
theorem imo_1979_p1 (p q : β„•) (hβ‚€ : 0 < q)
(h₁ : (βˆ‘ k in Finset.Icc (1 : β„•) 1319, (-1) ^ (k + 1) * ((1 : ℝ) / k)) = p / q) : 1979 ∣ p :=
sorry
theorem mathd_algebra_51 (a b : ℝ) (hβ‚€ : 0 < a ∧ 0 < b) (h₁ : a + b = 35) (hβ‚‚ : a = 2 / 5 * b) :
b - a = 15 := by
-- aesop?
aesop_subst hβ‚‚
unhygienic with_reducible aesop_destruct_products
simp_all only [gt_iff_lt, mul_pos_iff_of_pos_right]
linarith
theorem mathd_algebra_10 : abs ((120 : ℝ) / 100 * 30 - 130 / 100 * 20) = 10 := by
-- aesop?
norm_num