|
/- |
|
Copyright (c) 2021 OpenAI. All rights reserved. |
|
Released under Apache 2.0 license as described in the file LICENSE. |
|
Authors: Kunhao Zheng, Stanislas Polu, David Renshaw, OpenAI GPT-f |
|
|
|
! This file was ported from Lean 3 source module valid and edited by Kaiyu Yang. |
|
-/ |
|
import MiniF2F.Minif2fImport |
|
|
|
|
|
open BigOperators Real Nat Topology |
|
|
|
theorem amc12a_2019_p21 (z : β) (hβ : z = (1 + Complex.I) / Real.sqrt 2) : |
|
((β k : β€ in Finset.Icc 1 12, z ^ k ^ 2) * (β k : β€ in Finset.Icc 1 12, 1 / z ^ k ^ 2)) = 36 := by |
|
sorry |
|
|
|
theorem amc12a_2015_p10 (x y : β€) (hβ : 0 < y) (hβ : y < x) (hβ : x + y + x * y = 80) : x = 26 := by |
|
sorry |
|
|
|
theorem amc12a_2008_p8 (x y : β) (hβ : 0 < x β§ 0 < y) (hβ : y ^ 3 = 1) |
|
(hβ : 6 * x ^ 2 = 2 * (6 * y ^ 2)) : x ^ 3 = 2 * Real.sqrt 2 := by |
|
sorry |
|
|
|
theorem mathd_algebra_182 (y : β) : 7 * (3 * y + 2) = 21 * y + 14 := by |
|
|
|
ring |
|
|
|
theorem aime_1984_p5 (a b : β) (hβ : Real.logb 8 a + Real.logb 4 (b ^ 2) = 5) |
|
(hβ : Real.logb 8 b + Real.logb 4 (a ^ 2) = 7) : a * b = 512 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_780 (m x : β€) (hβ : 0 β€ x) (hβ : 10 β€ m β§ m β€ 99) (hβ : 6 * x % m = 1) |
|
(hβ : (x - 6 ^ 2) % m = 0) : m = 43 := by |
|
sorry |
|
|
|
theorem mathd_algebra_116 (k x : β) (hβ : x = (13 - Real.sqrt 131) / 4) |
|
(hβ : 2 * x ^ 2 - 13 * x + k = 0) : k = 19 / 4 := by |
|
rw [hβ] at hβ |
|
rw [eq_comm.mp (add_eq_zero_iff_neg_eq.mp hβ)] |
|
norm_num |
|
rw [pow_two] |
|
rw [mul_sub] |
|
rw [sub_mul, sub_mul] |
|
rw [Real.mul_self_sqrt _] |
|
ring |
|
linarith |
|
|
|
theorem mathd_numbertheory_13 (u v : β) (S : Set β) |
|
(hβ : β n : β, n β S β 0 < n β§ 14 * n % 100 = 46) (hβ : IsLeast S u) |
|
(hβ : IsLeast (S \ {u}) v) : (u + v : β) / 2 = 64 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_169 : Nat.gcd 20! 200000 = 40000 := by |
|
|
|
apply Eq.refl |
|
|
|
theorem amc12a_2009_p9 (a b c : β) (f : β β β) (hβ : β x, f (x + 3) = 3 * x ^ 2 + 7 * x + 4) |
|
(hβ : β x, f x = a * x ^ 2 + b * x + c) : a + b + c = 2 := by |
|
sorry |
|
|
|
theorem amc12a_2019_p9 (a : β β β) (hβ : a 1 = 1) (hβ : a 2 = 3 / 7) |
|
(hβ : β n, a (n + 2) = a n * a (n + 1) / (2 * a n - a (n + 1))) : |
|
β(a 2019).den + (a 2019).num = 8078 := by |
|
sorry |
|
|
|
theorem mathd_algebra_13 (a b : β) |
|
(hβ : β x, x - 3 β 0 β§ x - 5 β 0 β 4 * x / (x ^ 2 - 8 * x + 15) = a / (x - 3) + b / (x - 5)) : |
|
a = -6 β§ b = 10 := by |
|
sorry |
|
|
|
theorem induction_sum2kp1npqsqm1 (n : β) : |
|
β k in Finset.range n, (2 * k + 3) = (n + 1) ^ 2 - 1 := by |
|
sorry |
|
|
|
theorem aime_1991_p6 (r : β) (hβ : (β k in Finset.Icc (19 : β) 91, Int.floor (r + k / 100)) = 546) : |
|
Int.floor (100 * r) = 743 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_149 : |
|
(β k in Finset.filter (fun x => x % 8 = 5 β§ x % 6 = 3) (Finset.range 50), k) = 66 := by |
|
|
|
apply Eq.refl |
|
|
|
theorem imo_1984_p2 (a b : β€) (hβ : 0 < a β§ 0 < b) (hβ : Β¬7 β£ a) (hβ : Β¬7 β£ b) (hβ : Β¬7 β£ a + b) |
|
(hβ : 7 ^ 7 β£ (a + b) ^ 7 - a ^ 7 - b ^ 7) : 19 β€ a + b := by |
|
sorry |
|
|
|
theorem amc12a_2008_p4 : (β k in Finset.Icc (1 : β) 501, ((4 : β) * k + 4) / (4 * k)) = 502 := by |
|
sorry |
|
|
|
theorem imo_2006_p6 (a b c : β) : |
|
a * b * (a ^ 2 - b ^ 2) + b * c * (b ^ 2 - c ^ 2) + c * a * (c ^ 2 - a ^ 2) β€ |
|
9 * Real.sqrt 2 / 32 * (a ^ 2 + b ^ 2 + c ^ 2) ^ 2 := by |
|
sorry |
|
|
|
theorem mathd_algebra_462 : ((1 : β) / 2 + 1 / 3) * (1 / 2 - 1 / 3) = 5 / 36 := by |
|
|
|
simp_all only [one_div] |
|
norm_num |
|
|
|
theorem imo_1964_p1_2 (n : β) : Β¬7 β£ 2 ^ n + 1 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_221 (S : Finset β) |
|
(hβ : β x : β, x β S β 0 < x β§ x < 1000 β§ x.divisors.card = 3) : S.card = 11 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_64 : IsLeast { x : β | 30 * x β‘ 42 [MOD 47] } 39 := by |
|
sorry |
|
|
|
theorem imo_1987_p4 (f : β β β) : β n, f (f n) β n + 1987 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_33 (n : β) (hβ : n < 398) (hβ : n * 7 % 398 = 1) : n = 57 := by |
|
sorry |
|
|
|
theorem amc12_2001_p9 (f : β β β) (hβ : β x > 0, β y > 0, f (x * y) = f x / y) (hβ : f 500 = 3) : |
|
f 600 = 5 / 2 := by |
|
specialize hβ 500 _ (6 / 5) _ |
|
Β· linarith |
|
Β· linarith |
|
calc |
|
f 600 = f (500 * (6 / 5)) := by |
|
congr |
|
norm_num |
|
_ = f 500 / (6 / 5) := by rw [hβ] |
|
_ = 3 / (6 / 5) := by rw [hβ] |
|
_ = 5 / 2 := by norm_num |
|
|
|
|
|
theorem imo_1965_p1 (x : β) (hβ : 0 β€ x) (hβ : x β€ 2 * Ο) |
|
(hβ : 2 * Real.cos x β€ abs (Real.sqrt (1 + Real.sin (2 * x)) - Real.sqrt (1 - Real.sin (2 * x)))) |
|
(hβ : abs (Real.sqrt (1 + Real.sin (2 * x)) - Real.sqrt (1 - Real.sin (2 * x))) β€ Real.sqrt 2) : |
|
Ο / 4 β€ x β§ x β€ 7 * Ο / 4 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_48 (b : β) (hβ : 0 < b) (hβ : 3 * b ^ 2 + 2 * b + 1 = 57) : b = 4 := by |
|
|
|
simp_all only [succ.injEq] |
|
apply le_antisymm |
|
Β· nlinarith |
|
Β· nlinarith |
|
|
|
theorem numbertheory_sqmod4in01d (a : β€) : a ^ 2 % 4 = 0 β¨ a ^ 2 % 4 = 1 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_466 : (β k in Finset.range 11, k) % 9 = 1 := by |
|
|
|
apply Eq.refl |
|
|
|
theorem mathd_algebra_48 (q e : β) (hβ : q = 9 - 4 * Complex.I) (hβ : e = -3 - 4 * Complex.I) : |
|
q - e = 12 := by |
|
|
|
aesop_subst [hβ, hβ] |
|
simp_all only [sub_sub_sub_cancel_right, sub_neg_eq_add] |
|
norm_num |
|
|
|
theorem amc12_2000_p15 (f : β β β) (hβ : β x, f (x / 3) = x ^ 2 + x + 1) |
|
(hβ : Fintype (f β»ΒΉ' {7})) : (β y in (f β»ΒΉ' {7}).toFinset, y / 3) = -1 / 9 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_132 : 2004 % 12 = 0 := by |
|
|
|
apply Eq.refl |
|
|
|
theorem amc12a_2009_p5 (x : β) (hβ : x ^ 3 - (x + 1) * (x - 1) * x = 5) : x ^ 3 = 125 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_188 : Nat.gcd 180 168 = 12 := by |
|
apply Eq.refl |
|
|
|
theorem mathd_algebra_224 (S : Finset β) |
|
(hβ : β n : β, n β S β Real.sqrt n < 7 / 2 β§ 2 < Real.sqrt n) : S.card = 8 := by |
|
sorry |
|
|
|
theorem induction_divisibility_3divnto3m2n (n : β) : 3 β£ n ^ 3 + 2 * n := by |
|
sorry |
|
|
|
theorem induction_sum_1oktkp1 (n : β) : |
|
(β k in Finset.range n, (1 : β) / ((k + 1) * (k + 2))) = n / (n + 1) := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_32 (S : Finset β) (hβ : β n : β, n β S β n β£ 36) : (β k in S, k) = 91 := by |
|
sorry |
|
|
|
theorem mathd_algebra_422 (x : β) (Ο : Equiv β β) (hβ : β x, Ο.1 x = 5 * x - 12) |
|
(hβ : Ο.1 (x + 1) = Ο.2 x) : x = 47 / 24 := by |
|
sorry |
|
|
|
theorem amc12b_2002_p11 (a b : β) (hβ : Nat.Prime a) (hβ : Nat.Prime b) (hβ : Nat.Prime (a + b)) |
|
(hβ : Nat.Prime (a - b)) : Nat.Prime (a + b + (a - b + (a + b))) := by |
|
sorry |
|
|
|
theorem mathd_algebra_73 (p q r x : β) (hβ : (x - p) * (x - q) = (r - p) * (r - q)) (hβ : x β r) : |
|
x = p + q - r := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_109 (v : β β β) (hβ : β n, v n = 2 * n - 1) : |
|
(β k in Finset.Icc 1 100, v k) % 7 = 4 := by |
|
|
|
simp_all only [ge_iff_le, gt_iff_lt, lt_one_iff] |
|
apply Eq.refl |
|
|
|
theorem algebra_xmysqpymzsqpzmxsqeqxyz_xpypzp6dvdx3y3z3 (x y z : β€) |
|
(hβ : (x - y) ^ 2 + (y - z) ^ 2 + (z - x) ^ 2 = x * y * z) : |
|
x + y + z + 6 β£ x ^ 3 + y ^ 3 + z ^ 3 := by |
|
sorry |
|
|
|
|
|
|
|
theorem imo_1962_p4 (S : Set β) |
|
(hβ : S = { x : β | Real.cos x ^ 2 + Real.cos (2 * x) ^ 2 + Real.cos (3 * x) ^ 2 = 1 }) : |
|
S = |
|
{ x : β | |
|
β m : β€, |
|
x = Ο / 2 + m * Ο β¨ |
|
x = Ο / 4 + m * Ο / 2 β¨ x = Ο / 6 + m * Ο / 6 β¨ x = 5 * Ο / 6 + m * Ο / 6 } := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_236 : 1999 ^ 2000 % 5 = 1 := by |
|
|
|
apply Eq.refl |
|
|
|
theorem mathd_numbertheory_24 : (β k in Finset.Icc 1 9, 11 ^ k) % 100 = 59 := by |
|
|
|
apply Eq.refl |
|
|
|
theorem algebra_amgm_prod1toneq1_sum1tongeqn (a : β β NNReal) (n : β) |
|
(hβ : Finset.prod (Finset.range n) a = 1) : Finset.sum (Finset.range n) a β₯ n := by |
|
sorry |
|
|
|
theorem mathd_algebra_101 (x : β) (hβ : x ^ 2 - 5 * x - 4 β€ 10) : x β₯ -2 β§ x β€ 7 := by |
|
|
|
simp_all only [rpow_two, tsub_le_iff_right, ge_iff_le] |
|
apply And.intro |
|
Β· nlinarith |
|
Β· nlinarith |
|
|
|
theorem mathd_numbertheory_257 (x : β) (hβ : 1 β€ x β§ x β€ 100) |
|
(hβ : 77 β£ (β k in Finset.range 101, k) - x) : x = 45 := by |
|
sorry |
|
|
|
theorem amc12_2000_p5 (x p : β) (hβ : x < 2) (hβ : abs (x - 2) = p) : x - p = 2 - 2 * p := by |
|
suffices abs (x - 2) = -(x - 2) by |
|
rw [hβ] at this |
|
linarith |
|
apply abs_of_neg |
|
linarith |
|
|
|
theorem mathd_algebra_547 (x y : β) (hβ : x = 5) (hβ : y = 2) : Real.sqrt (x ^ 3 - 2 ^ y) = 11 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_200 : 139 % 11 = 7 := by |
|
|
|
apply Eq.refl |
|
|
|
theorem mathd_algebra_510 (x y : β) (hβ : x + y = 13) (hβ : x * y = 24) : |
|
Real.sqrt (x ^ 2 + y ^ 2) = 11 := by |
|
sorry |
|
|
|
theorem mathd_algebra_140 (a b c : β) (hβ : 0 < a β§ 0 < b β§ 0 < c) |
|
(hβ : β x, 24 * x ^ 2 - 19 * x - 35 = (a * x - 5) * (2 * (b * x) + c)) : a * b - 3 * c = -9 := by |
|
sorry |
|
|
|
theorem mathd_algebra_455 (x : β) (hβ : 2 * (2 * (2 * (2 * x))) = 48) : x = 3 := by |
|
|
|
linarith |
|
|
|
theorem mathd_numbertheory_45 : Nat.gcd 6432 132 + 11 = 23 := by |
|
|
|
simp_all only [succ.injEq] |
|
apply Eq.refl |
|
|
|
theorem aime_1994_p4 (n : β) (hβ : 0 < n) |
|
(hβ : (β k in Finset.Icc 1 n, Int.floor (Real.logb 2 k)) = 1994) : n = 312 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_739 : 9! % 10 = 0 := by |
|
|
|
apply Eq.refl |
|
|
|
theorem mathd_algebra_245 (x : β) (hβ : x β 0) : |
|
(4 / x)β»ΒΉ * (3 * x ^ 3 / x) ^ 2 * (1 / (2 * x))β»ΒΉ ^ 3 = 18 * x ^ 8 := by |
|
sorry |
|
|
|
theorem algebra_apb4leq8ta4pb4 (a b : β) (hβ : 0 < a β§ 0 < b) : (a + b) ^ 4 β€ 8 * (a ^ 4 + b ^ 4) := by |
|
sorry |
|
|
|
theorem mathd_algebra_28 (c : β) (f : β β β) (hβ : β x, f x = 2 * x ^ 2 + 5 * x + c) |
|
(hβ : β x, f x β€ 0) : c β€ 25 / 8 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_543 : (β k in Nat.divisors (30 ^ 4), 1) - 2 = 123 := by |
|
sorry |
|
|
|
theorem mathd_algebra_480 (f : β β β) (hβ : β x < 0, f x = -x ^ 2 - 1) |
|
(hβ : β x, 0 β€ x β§ x < 4 β f x = 2) (hβ : β x β₯ 4, f x = Real.sqrt x) : f Ο = 2 := by |
|
sorry |
|
|
|
theorem mathd_algebra_69 (rows seats : β) (hβ : rows * seats = 450) |
|
(hβ : (rows + 5) * (seats - 3) = 450) : rows = 25 := by |
|
sorry |
|
|
|
theorem mathd_algebra_433 (f : β β β) (hβ : β x, f x = 3 * Real.sqrt (2 * x - 7) - 8) : f 8 = 19 := by |
|
sorry |
|
|
|
theorem mathd_algebra_126 (x y : β) (hβ : 2 * 3 = x - 9) (hβ : 2 * -5 = y + 1) : x = 15 β§ y = -11 := by |
|
|
|
simp_all only [mul_neg] |
|
apply And.intro |
|
Β· linarith |
|
Β· linarith |
|
|
|
theorem aimeII_2020_p6 (t : β β β) (hβ : t 1 = 20) (hβ : t 2 = 21) |
|
(hβ : β n β₯ 3, t n = (5 * t (n - 1) + 1) / (25 * t (n - 2))) : |
|
β(t 2020).den + (t 2020).num = 626 := by |
|
sorry |
|
|
|
theorem amc12a_2008_p2 (x : β) (hβ : x * (1 / 2 + 2 / 3) = 1) : x = 6 / 7 := by |
|
|
|
simp_all only [one_div] |
|
linarith |
|
|
|
theorem mathd_algebra_35 (p q : β β β) (hβ : β x, p x = 2 - x ^ 2) |
|
(hβ : β x : β, x β 0 β q x = 6 / x) : p (q 2) = -7 := by |
|
|
|
simp_all only [rpow_two, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, div_pow] |
|
norm_num |
|
|
|
theorem algebra_amgm_faxinrrp2msqrt2geq2mxm1div2x : |
|
β x > 0, 2 - Real.sqrt 2 β₯ 2 - x - 1 / (2 * x) := by |
|
intros x h |
|
sorry |
|
|
|
theorem mathd_numbertheory_335 (n : β) (hβ : n % 7 = 5) : 5 * n % 7 = 4 := by |
|
rw [Nat.mul_mod, hβ] |
|
|
|
theorem mathd_numbertheory_35 (S : Finset β) (hβ : β n : β, n β£ Nat.sqrt 196) : |
|
(β k in S, k) = 24 := by |
|
sorry |
|
|
|
theorem amc12a_2021_p7 (x y : β) : 1 β€ (x * y - 1) ^ 2 + (x + y) ^ 2 := by |
|
simp only [sub_eq_add_neg, add_right_comm] |
|
ring |
|
nlinarith |
|
|
|
theorem mathd_algebra_327 (a : β) (hβ : 1 / 5 * abs (9 + 2 * a) < 1) : -7 < a β§ a < -2 := by |
|
have hβ := (mul_lt_mul_left (show 0 < (5 : β) by linarith)).mpr hβ |
|
have hβ : abs (9 + 2 * a) < 5 := by linarith |
|
have hβ := abs_lt.mp hβ |
|
cases' hβ with hβ hβ |
|
constructor <;> nlinarith |
|
|
|
theorem aime_1984_p15 (x y z w : β) |
|
(hβ : |
|
x ^ 2 / (2 ^ 2 - 1) + y ^ 2 / (2 ^ 2 - 3 ^ 2) + z ^ 2 / (2 ^ 2 - 5 ^ 2) + |
|
w ^ 2 / (2 ^ 2 - 7 ^ 2) = |
|
1) |
|
(hβ : |
|
x ^ 2 / (4 ^ 2 - 1) + y ^ 2 / (4 ^ 2 - 3 ^ 2) + z ^ 2 / (4 ^ 2 - 5 ^ 2) + |
|
w ^ 2 / (4 ^ 2 - 7 ^ 2) = |
|
1) |
|
(hβ : |
|
x ^ 2 / (6 ^ 2 - 1) + y ^ 2 / (6 ^ 2 - 3 ^ 2) + z ^ 2 / (6 ^ 2 - 5 ^ 2) + |
|
w ^ 2 / (6 ^ 2 - 7 ^ 2) = |
|
1) |
|
(hβ : |
|
x ^ 2 / (8 ^ 2 - 1) + y ^ 2 / (8 ^ 2 - 3 ^ 2) + z ^ 2 / (8 ^ 2 - 5 ^ 2) + |
|
w ^ 2 / (8 ^ 2 - 7 ^ 2) = |
|
1) : |
|
x ^ 2 + y ^ 2 + z ^ 2 + w ^ 2 = 36 := by |
|
sorry |
|
|
|
theorem algebra_amgm_sqrtxymulxmyeqxpy_xpygeq4 (x y : β) (hβ : 0 < x β§ 0 < y) (hβ : y β€ x) |
|
(hβ : Real.sqrt (x * y) * (x - y) = x + y) : x + y β₯ 4 := by |
|
sorry |
|
|
|
theorem amc12a_2002_p21 (u : β β β) (hβ : u 0 = 4) (hβ : u 1 = 7) |
|
(hβ : β n β₯ 2, u (n + 2) = (u n + u (n + 1)) % 10) : |
|
β n, (β k in Finset.range n, u k) > 10000 β 1999 β€ n := by sorry |
|
|
|
theorem mathd_algebra_192 (q e d : β) (hβ : q = 11 - 5 * Complex.I) (hβ : e = 11 + 5 * Complex.I) |
|
(hβ : d = 2 * Complex.I) : q * e * d = 292 * Complex.I := by |
|
|
|
sorry |
|
|
|
theorem amc12b_2002_p6 (a b : β) (hβ : a β 0 β§ b β 0) |
|
(hβ : β x, x ^ 2 + a * x + b = (x - a) * (x - b)) : a = 1 β§ b = -2 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_102 : 2 ^ 8 % 5 = 1 := by |
|
|
|
apply Eq.refl |
|
|
|
theorem amc12a_2010_p22 (x : β) : 49 β€ β k:β€ in Finset.Icc 1 119, abs (βk * x - 1) := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_81 : 71 % 3 = 2 := by |
|
|
|
apply Eq.refl |
|
|
|
theorem mathd_numbertheory_155 : |
|
Finset.card (Finset.filter (fun x => x % 19 = 7) (Finset.Icc 100 999)) = 48 := by |
|
|
|
apply Eq.refl |
|
|
|
theorem imo_1978_p5 (n : β) (a : β β β) (hβ : Function.Injective a) (hβ : a 0 = 0) (hβ : 0 < n) : |
|
(β k in Finset.Icc 1 n, (1 : β) / k) β€ β k in Finset.Icc 1 n, (a k : β) / k ^ 2 := by |
|
sorry |
|
|
|
theorem amc12a_2017_p7 (f : β β β) (hβ : f 1 = 2) (hβ : β n, 1 < n β§ Even n β f n = f (n - 1) + 1) |
|
(hβ : β n, 1 < n β§ Odd n β f n = f (n - 2) + 2) : f 2017 = 2018 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_42 (S : Set β) (u v : β) (hβ : β a : β, a β S β 0 < a β§ 27 * a % 40 = 17) |
|
(hβ : IsLeast S u) (hβ : IsLeast (S \ {u}) v) : u + v = 62 := by |
|
sorry |
|
|
|
theorem mathd_algebra_110 (q e : β) (hβ : q = 2 - 2 * Complex.I) (hβ : e = 5 + 5 * Complex.I) : |
|
q * e = 20 := by |
|
|
|
sorry |
|
|
|
theorem amc12b_2021_p21 (S : Finset β) |
|
(hβ : β x : β, x β S β 0 < x β§ x ^ (2 : β) ^ Real.sqrt 2 = Real.sqrt 2 ^ (2 : β) ^ x) : |
|
(β2 β€ β k in S, k) β§ (β k in S, k) < 6 := by |
|
sorry |
|
|
|
theorem mathd_algebra_405 (S : Finset β) (hβ : β x, x β S β 0 < x β§ x ^ 2 + 4 * x + 4 < 20) : |
|
S.card = 2 := by |
|
sorry |
|
|
|
theorem numbertheory_sumkmulnckeqnmul2pownm1 (n : β) (hβ : 0 < n) : |
|
(β k in Finset.Icc 1 n, k * Nat.choose n k) = n * 2 ^ (n - 1) := by |
|
sorry |
|
|
|
theorem mathd_algebra_393 (Ο : Equiv β β) (hβ : β x, Ο.1 x = 4 * x ^ 3 + 1) : Ο.2 33 = 2 := by |
|
|
|
simp_all only [Equiv.toFun_as_coe, Equiv.invFun_as_coe] |
|
rw [Ο.symm_apply_eq] |
|
simp_all only |
|
norm_cast |
|
|
|
theorem amc12b_2004_p3 (x y : β) (hβ : 2 ^ x * 3 ^ y = 1296) : x + y = 8 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_303 (S : Finset β) |
|
(hβ : β n : β, n β S β 2 β€ n β§ 171 β‘ 80 [MOD n] β§ 468 β‘ 13 [MOD n]) : (β k in S, k) = 111 := by |
|
sorry |
|
|
|
theorem mathd_algebra_151 : Int.ceil (Real.sqrt 27) - Int.floor (Real.sqrt 26) = 1 := by |
|
sorry |
|
|
|
theorem amc12a_2011_p18 (x y : β) (hβ : abs (x + y) + abs (x - y) = 2) : |
|
x ^ 2 - 6 * x + y ^ 2 β€ 8 := by |
|
sorry |
|
|
|
theorem mathd_algebra_15 (s : β β β β β) |
|
(hβ : β a b, 0 < a β§ 0 < b β s a b = a ^ (b : β) + b ^ (a : β)) : s 2 6 = 100 := by |
|
|
|
simp_all only [and_imp, zero_lt_two, zero_lt_succ] |
|
apply Eq.refl |
|
|
|
theorem mathd_numbertheory_211 : |
|
Finset.card (Finset.filter (fun n => 6 β£ 4 * βn - (2 : β€)) (Finset.range 60)) = 20 := by |
|
|
|
apply Eq.refl |
|
|
|
theorem mathd_numbertheory_640 : (91145 + 91146 + 91147 + 91148) % 4 = 2 := by |
|
|
|
apply Eq.refl |
|
|
|
theorem amc12b_2003_p6 (a r : β) (u : β β β) (hβ : β k, u k = a * r ^ k) (hβ : u 1 = 2) |
|
(hβ : u 3 = 6) : u 0 = 2 / Real.sqrt 3 β¨ u 0 = -(2 / Real.sqrt 3) := by |
|
sorry |
|
|
|
theorem algebra_2rootsintpoly_am10tap11eqasqpam110 (a : β) : |
|
(a - 10) * (a + 11) = a ^ 2 + a - 110 := by |
|
|
|
ring |
|
|
|
theorem aime_1991_p1 (x y : β) (hβ : 0 < x β§ 0 < y) (hβ : x * y + (x + y) = 71) |
|
(hβ : x ^ 2 * y + x * y ^ 2 = 880) : x ^ 2 + y ^ 2 = 146 := by |
|
sorry |
|
|
|
theorem mathd_algebra_43 (a b : β) (f : β β β) (hβ : β x, f x = a * x + b) (hβ : f 7 = 4) |
|
(hβ : f 6 = 3) : f 3 = 0 := by |
|
|
|
simp_all only |
|
linarith |
|
|
|
theorem imo_1988_p6 (a b : β) (hβ : 0 < a β§ 0 < b) (hβ : a * b + 1 β£ a ^ 2 + b ^ 2) : |
|
β x : β, (x ^ 2 : β) = (a ^ 2 + b ^ 2) / (a * b + 1) := by |
|
sorry |
|
|
|
theorem aime_1996_p5 (a b c r s t : β) (f g : β β β) |
|
(hβ : β x, f x = x ^ 3 + 3 * x ^ 2 + 4 * x - 11) (hβ : β x, g x = x ^ 3 + r * x ^ 2 + s * x + t) |
|
(hβ : f a = 0) (hβ : f b = 0) (hβ : f c = 0) (hβ
: g (a + b) = 0) (hβ : g (b + c) = 0) |
|
(hβ : g (c + a) = 0) (hβ : List.Pairwise (Β· β Β·) [a, b, c]) : t = 23 := by |
|
sorry |
|
|
|
theorem mathd_algebra_55 (q p : β) (hβ : q = 2 - 4 + 6 - 8 + 10 - 12 + 14) |
|
(hβ : p = 3 - 6 + 9 - 12 + 15 - 18 + 21) : q / p = 2 / 3 := by |
|
|
|
aesop_subst [hβ, hβ] |
|
norm_num |
|
|
|
theorem algebra_sqineq_2at2pclta2c2p41pc (a c : β) : |
|
2 * a * (2 + c) β€ a ^ 2 + c ^ 2 + 4 * (1 + c) := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_43 : IsGreatest { n : β | 15 ^ n β£ 942! } 233 := by |
|
sorry |
|
|
|
theorem mathd_algebra_214 (a : β) (f : β β β) (hβ : β x, f x = a * (x - 2) ^ 2 + 3) (hβ : f 4 = 4) : |
|
f 6 = 7 := by |
|
|
|
simp_all only [rpow_two] |
|
linarith |
|
|
|
theorem mathd_algebra_96 (x y z a : β) (hβ : 0 < x β§ 0 < y β§ 0 < z) |
|
(hβ : Real.log x - Real.log y = a) (hβ : Real.log y - Real.log z = 15) |
|
(hβ : Real.log z - Real.log x = -7) : a = -8 := by |
|
|
|
aesop_subst hβ |
|
unhygienic with_reducible aesop_destruct_products |
|
linarith |
|
|
|
theorem amc12_2001_p2 (a b n : β) (hβ : 1 β€ a β§ a β€ 9) (hβ : 0 β€ b β§ b β€ 9) (hβ : n = 10 * a + b) |
|
(hβ : n = a * b + a + b) : b = 9 := by |
|
rw [hβ] at hβ |
|
simp at hβ |
|
have hβ : 10 * a = (b + 1) * a := by linarith |
|
simp at hβ |
|
cases' hβ with hβ
hβ |
|
linarith |
|
exfalso |
|
simp_all [le_refl] |
|
|
|
theorem mathd_algebra_185 (s : Finset β€) (f : β€ β β€) (hβ : β x, f x = abs (x + 4)) |
|
(hβ : β x, x β s β f x < 9) : s.card = 17 := by |
|
sorry |
|
|
|
theorem algebra_binomnegdiscrineq_10alt28asqp1 (a : β) : 10 * a β€ 28 * a ^ 2 + 1 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_284 (a b : β) (hβ : 1 β€ a β§ a β€ 9 β§ b β€ 9) |
|
(hβ : 10 * a + b = 2 * (a + b)) : 10 * a + b = 18 := by |
|
sorry |
|
|
|
theorem amc12a_2009_p2 : 1 + 1 / (1 + 1 / (1 + 1)) = (5 : β) / 3 := by |
|
|
|
simp_all only [one_div] |
|
norm_num |
|
|
|
theorem mathd_numbertheory_709 (n : β) (hβ : 0 < n) (hβ : Finset.card (Nat.divisors (2 * n)) = 28) |
|
(hβ : Finset.card (Nat.divisors (3 * n)) = 30) : Finset.card (Nat.divisors (6 * n)) = 35 := by |
|
sorry |
|
|
|
theorem amc12a_2013_p8 (x y : β) (hβ : x β 0) (hβ : y β 0) (hβ : x β y) |
|
(hβ : x + 2 / x = y + 2 / y) : x * y = 2 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_461 (n : β) |
|
(hβ : n = Finset.card (Finset.filter (fun x => Nat.gcd x 8 = 1) (Finset.Icc 1 7))) : |
|
3 ^ n % 8 = 1 := by |
|
|
|
aesop_subst hβ |
|
apply Eq.refl |
|
|
|
theorem mathd_algebra_59 (b : β) (hβ : (4 : β) ^ b + 2 ^ 3 = 12) : b = 1 := by |
|
sorry |
|
|
|
theorem mathd_algebra_234 (d : β) (hβ : 27 / 125 * d = 9 / 25) : 3 / 5 * d ^ 3 = 25 / 9 := by |
|
sorry |
|
|
|
|
|
|
|
theorem imo_1973_p3 (a b : β) (hβ : β x, x ^ 4 + a * x ^ 3 + b * x ^ 2 + a * x + 1 = 0) : |
|
4 / 5 β€ a ^ 2 + b ^ 2 := by |
|
sorry |
|
|
|
theorem amc12b_2020_p5 (a b : β) (hβ : (5 : β) / 8 * b = 2 / 3 * a + 7) |
|
(hβ : (b : β) - 5 / 8 * b = a - 2 / 3 * a + 7) : a = 42 := by |
|
sorry |
|
|
|
theorem numbertheory_sqmod3in01d (a : β€) : a ^ 2 % 3 = 0 β¨ a ^ 2 % 3 = 1 := by |
|
sorry |
|
|
|
theorem mathd_algebra_131 (a b : β) (f : β β β) (hβ : β x, f x = 2 * x ^ 2 - 7 * x + 2) |
|
(hβ : f a = 0) (hβ : f b = 0) (hβ : a β b) : 1 / (a - 1) + 1 / (b - 1) = -1 := by |
|
sorry |
|
|
|
theorem amc12b_2003_p17 (x y : β) (hβ : 0 < x β§ 0 < y) (hβ : Real.log (x * y ^ 3) = 1) |
|
(hβ : Real.log (x ^ 2 * y) = 1) : Real.log (x * y) = 3 / 5 := by |
|
sorry |
|
|
|
theorem mathd_algebra_536 : β3! * ((2 : β) ^ 3 + Real.sqrt 9) / 2 = (33 : β) := by |
|
sorry |
|
|
|
theorem mathd_algebra_22 : Real.logb (5 ^ 2) (5 ^ 4) = 2 := by |
|
sorry |
|
|
|
theorem numbertheory_xsqpysqintdenomeq (x y : β) (hβ : (x ^ 2 + y ^ 2).den = 1) : x.den = y.den := by |
|
sorry |
|
|
|
theorem aimeII_2001_p3 (x : β β β€) (hβ : x 1 = 211) (hβ : x 2 = 375) (hβ : x 3 = 420) |
|
(hβ : x 4 = 523) (hβ : β n β₯ 5, x n = x (n - 1) - x (n - 2) + x (n - 3) - x (n - 4)) : |
|
x 531 + x 753 + x 975 = 898 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_22 (b : β) (hβ : b < 10) |
|
(hβ : Nat.sqrt (10 * b + 6) * Nat.sqrt (10 * b + 6) = 10 * b + 6) : b = 3 β¨ b = 1 := by |
|
sorry |
|
|
|
theorem aime_1987_p8 : |
|
IsGreatest { n : β | 0 < n β§ β! k : β, (8 : β) / 15 < n / (n + k) β§ (n : β) / (n + k) < 7 / 13 } 112 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_136 (n : β) (hβ : 123 * n + 17 = 39500) : n = 321 := by |
|
|
|
simp_all only [succ.injEq] |
|
linarith |
|
|
|
theorem amc12_2000_p11 (a b : β) (hβ : a β 0 β§ b β 0) (hβ : a * b = a - b) : |
|
a / b + b / a - a * b = 2 := by |
|
field_simp [hβ.1, hβ.2] |
|
simp only [hβ, mul_comm, mul_sub] |
|
ring |
|
|
|
theorem amc12b_2003_p9 (a b : β) (f : β β β) (hβ : β x, f x = a * x + b) (hβ : f 6 - f 2 = 12) : |
|
f 12 - f 2 = 30 := by |
|
|
|
simp_all only [add_sub_add_right_eq_sub] |
|
linarith |
|
|
|
theorem algebra_2complexrootspoly_xsqp49eqxp7itxpn7i (x : β) : |
|
x ^ 2 + 49 = (x + 7 * Complex.I) * (x + -7 * Complex.I) := by |
|
|
|
simp_all only [Complex.cpow_two, neg_mul] |
|
ring |
|
simp_all only [Complex.I_sq, neg_mul, one_mul, sub_neg_eq_add] |
|
ring |
|
|
|
theorem mathd_numbertheory_198 : 5 ^ 2005 % 100 = 25 := by |
|
|
|
apply Eq.refl |
|
|
|
theorem mathd_algebra_149 (f : β β β) (hβ : β x < -5, f x = x ^ 2 + 5) |
|
(hβ : β x β₯ -5, f x = 3 * x - 8) (hβ : Fintype (f β»ΒΉ' {10})) : |
|
(β k in (f β»ΒΉ' {10}).toFinset, k) = 6 := by |
|
sorry |
|
|
|
theorem mathd_algebra_132 (x : β) (f g : β β β) (hβ : β x, f x = x + 2) (hβ : β x, g x = x ^ 2) |
|
(hβ : f (g x) = g (f x)) : x = -1 / 2 := by |
|
|
|
simp_all only [rpow_two] |
|
linarith |
|
|
|
theorem mathd_numbertheory_37 : Nat.lcm 9999 100001 = 90900909 := by |
|
|
|
apply Eq.refl |
|
|
|
theorem aime_1983_p9 (x : β) (hβ : 0 < x β§ x < Real.pi) : |
|
12 β€ (9 * (x ^ 2 * Real.sin x ^ 2) + 4) / (x * Real.sin x) := by |
|
sorry |
|
|
|
theorem mathd_algebra_37 (x y : β) (hβ : x + y = 7) (hβ : 3 * x + y = 45) : x ^ 2 - y ^ 2 = 217 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_458 (n : β) (hβ : n % 8 = 7) : n % 4 = 3 := by |
|
sorry |
|
|
|
theorem amc12a_2008_p15 (k : β) (hβ : k = 2008 ^ 2 + 2 ^ 2008) : (k ^ 2 + 2 ^ k) % 10 = 6 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_301 (j : β) (hβ : 0 < j) : 3 * (7 * βj + 3) % 7 = 2 := by |
|
calc |
|
3 * (7 * βj + 3) % 7 = (3 * 3 + 3 * βj * 7) % 7 := by ring_nf |
|
_ = 3 * 3 % 7 := by apply Nat.add_mul_mod_self_right |
|
_ = 2 := by norm_num |
|
|
|
|
|
theorem amc12a_2009_p15 (n : β) (hβ : 0 < n) |
|
(hβ : (β k in Finset.Icc 1 n, βk * Complex.I ^ k) = 48 + 49 * Complex.I) : n = 97 := by |
|
sorry |
|
|
|
theorem algebra_sqineq_36azm9asqle36zsq (z a : β) : 36 * (a * z) - 9 * a ^ 2 β€ 36 * z ^ 2 := by |
|
sorry |
|
|
|
theorem amc12a_2013_p7 (s : β β β) (hβ : β n, s (n + 2) = s (n + 1) + s n) (hβ : s 9 = 110) |
|
(hβ : s 7 = 42) : s 4 = 10 := by |
|
|
|
simp_all only [zero_add] |
|
linarith |
|
|
|
theorem mathd_algebra_104 (x : β) (hβ : 125 / 8 = x / 12) : x = 375 / 2 := by |
|
|
|
linarith |
|
|
|
theorem mathd_numbertheory_252 : 7! % 23 = 3 := by |
|
|
|
apply Eq.refl |
|
|
|
theorem amc12a_2020_p21 (S : Finset β) |
|
(hβ : β n : β, n β S β 5 β£ n β§ Nat.lcm 5! n = 5 * Nat.gcd 10! n) : S.card = 48 := by |
|
sorry |
|
|
|
theorem mathd_algebra_493 (f : β β β) (hβ : β x, f x = x ^ 2 - 4 * Real.sqrt x + 1) : |
|
f (f 4) = 70 := by |
|
sorry |
|
|
|
theorem numbertheory_nckeqnm1ckpnm1ckm1 (n k : β) (hβ : 0 < n β§ 0 < k) (hβ : k β€ n) : |
|
Nat.choose n k = Nat.choose (n - 1) k + Nat.choose (n - 1) (k - 1) := by |
|
sorry |
|
|
|
theorem algebra_3rootspoly_amdtamctambeqnasqmbpctapcbtdpasqmbpctapcbta (b c d a : β) : |
|
(a - d) * (a - c) * (a - b) = |
|
-((a ^ 2 - (b + c) * a + c * b) * d) + (a ^ 2 - (b + c) * a + c * b) * a := by |
|
|
|
ring |
|
|
|
theorem mathd_numbertheory_403 : (β k in Nat.properDivisors 198, k) = 270 := by |
|
|
|
apply Eq.refl |
|
|
|
theorem mathd_algebra_190 : ((3 : β) / 8 + 7 / 8) / (4 / 5) = 25 / 16 := by |
|
|
|
norm_num |
|
|
|
theorem mathd_numbertheory_269 : (2005 ^ 2 + 2005 ^ 0 + 2005 ^ 0 + 2005 ^ 5) % 100 = 52 := by |
|
|
|
simp_all only [_root_.pow_zero] |
|
apply Eq.refl |
|
|
|
theorem aime_1990_p2 : |
|
(52 + 6 * Real.sqrt 43) ^ ((3 : β) / 2) - (52 - 6 * Real.sqrt 43) ^ ((3 : β) / 2) = 828 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_101 : 17 * 18 % 4 = 2 := by |
|
|
|
apply Eq.refl |
|
|
|
theorem algebra_sqineq_4bap1lt4bsqpap1sq (a b : β) : 4 * b * (a + 1) β€ 4 * b ^ 2 + (a + 1) ^ 2 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_156 (n : β) (hβ : 0 < n) : Nat.gcd (n + 7) (2 * n + 1) β€ 13 := by |
|
sorry |
|
|
|
theorem mathd_algebra_451 (Ο : Equiv β β) (hβ : Ο.2 (-15) = 0) (hβ : Ο.2 0 = 3) (hβ : Ο.2 3 = 9) |
|
(hβ : Ο.2 9 = 20) : Ο.1 (Ο.1 9) = 0 := by |
|
simp only [Equiv.invFun_as_coe, eq_comm] at hβ hβ hβ hβ |
|
simp only [Equiv.toFun_as_coe] |
|
rw [β Equiv.apply_eq_iff_eq_symm_apply Ο] at hβ |
|
rw [β Equiv.apply_eq_iff_eq_symm_apply Ο] at hβ |
|
have hβ := (Equiv.apply_eq_iff_eq Ο).mpr hβ |
|
rw [hβ] at hβ |
|
exact hβ |
|
|
|
theorem mathd_algebra_144 (a b c d : β) (hβ : 0 < a β§ 0 < b β§ 0 < c β§ 0 < d) (hβ : (c : β€) - b = d) |
|
(hβ : (b : β€) - a = d) (hβ : a + b + c = 60) (hβ : a + b > c) : d < 10 := by |
|
|
|
rename_i hβ_1 |
|
simp_all only [gt_iff_lt] |
|
unhygienic with_reducible aesop_destruct_products |
|
linarith |
|
|
|
theorem mathd_algebra_282 (f : β β β) (hβ : β x : β, Β¬ (Irrational x) β f x = abs (Int.floor x)) |
|
(hβ : β x, Irrational x β f x = (Int.ceil x) ^ 2) : |
|
f (8 ^ (1 / 3)) + f (-Real.pi) + f (Real.sqrt 50) + f (9 / 2) = 79 := by |
|
sorry |
|
|
|
theorem mathd_algebra_410 (x y : β) (hβ : y = x ^ 2 - 6 * x + 13) : 4 β€ y := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_232 (x y z : ZMod 31) (hβ : x = 3β»ΒΉ) (hβ : y = 5β»ΒΉ) |
|
(hβ : z = (x + y)β»ΒΉ) : z = 29 := by |
|
|
|
aesop_subst [hβ, hβ, hβ] |
|
apply Eq.refl |
|
|
|
theorem mathd_algebra_77 (a b : β) (f : β β β) (hβ : a β 0 β§ b β 0) (hβ : a β b) |
|
(hβ : β x, f x = x ^ 2 + a * x + b) (hβ : f a = 0) (hβ : f b = 0) : a = 1 β§ b = -2 := by |
|
sorry |
|
|
|
|
|
|
|
theorem imo_1974_p5 (a b c d s : β) (hβ : 0 < a β§ 0 < b β§ 0 < c β§ 0 < d) |
|
(hβ : s = a / (a + b + d) + b / (a + b + c) + c / (b + c + d) + d / (a + c + d)) : |
|
1 < s β§ s < 2 := by |
|
sorry |
|
|
|
theorem aime_1988_p3 (x : β) (hβ : 0 < x) |
|
(hβ : Real.logb 2 (Real.logb 8 x) = Real.logb 8 (Real.logb 2 x)) : Real.logb 2 x ^ 2 = 27 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_530 (n k : β) (hβ : 0 < n β§ 0 < k) (hβ : (n : β) / k < 6) |
|
(hβ : (5 : β) < n / k) : 22 β€ Nat.lcm n k / Nat.gcd n k := by |
|
sorry |
|
|
|
theorem mathd_algebra_109 (a b : β) (hβ : 3 * a + 2 * b = 12) (hβ : a = 4) : b = 0 := by |
|
|
|
aesop_subst hβ |
|
linarith |
|
|
|
theorem imo_1967_p3 (k m n : β) (c : β β β) (hβ : 0 < k β§ 0 < m β§ 0 < n) |
|
(hβ : β s, c s = s * (s + 1)) (hβ : Nat.Prime (k + m + 1)) (hβ : n + 1 < k + m + 1) : |
|
(β i in Finset.Icc 1 n, c i) β£ β i in Finset.Icc 1 n, c (m + i) - c k := by |
|
sorry |
|
|
|
theorem mathd_algebra_11 (a b : β) (hβ : a β b) (hβ : a β 2 * b) |
|
(hβ : (4 * a + 3 * b) / (a - 2 * b) = 5) : (a + 11 * b) / (a - b) = 2 := by |
|
sorry |
|
|
|
theorem amc12a_2003_p1 (u v : β β β) (hβ : β n, u n = 2 * n + 2) (hβ : β n, v n = 2 * n + 1) : |
|
((β k in Finset.range 2003, u k) - β k in Finset.range 2003, v k) = 2003 := by |
|
|
|
simp_all only [ge_iff_le] |
|
rfl |
|
|
|
theorem numbertheory_aneqprodakp4_anmsqrtanp1eq2 (a : β β β) (hβ : a 0 = 1) |
|
(hβ : β n, a (n + 1) = (β k in Finset.range (n + 1), a k) + 4) : |
|
β n β₯ 1, a n - Real.sqrt (a (n + 1)) = 2 := by |
|
sorry |
|
|
|
theorem algebra_2rootspoly_apatapbeq2asqp2ab (a b : β) : |
|
(a + a) * (a + b) = 2 * a ^ 2 + 2 * (a * b) := by |
|
|
|
ring |
|
|
|
theorem induction_sum_odd (n : β) : (β k in Finset.range n, 2 * k) + 1 = n ^ 2 := by |
|
sorry |
|
|
|
theorem mathd_algebra_568 (a : β) : |
|
(a - 1) * (a + 1) * (a + 2) - (a - 2) * (a + 1) = a ^ 3 + a ^ 2 := by |
|
|
|
ring |
|
|
|
theorem mathd_algebra_616 (f g : β β β) (hβ : β x, f x = x ^ 3 + 2 * x + 1) |
|
(hβ : β x, g x = x - 1) : f (g 1) = 1 := by |
|
|
|
simp_all |
|
|
|
theorem mathd_numbertheory_690 : |
|
IsLeast { a : β | 0 < a β§ a β‘ 2 [MOD 3] β§ a β‘ 4 [MOD 5] β§ a β‘ 6 [MOD 7] β§ a β‘ 8 [MOD 9] } 314 := by |
|
sorry |
|
|
|
theorem amc12a_2016_p2 (x : β) (hβ : (10 : β) ^ x * 100 ^ (2 * x) = 1000 ^ 5) : x = 3 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_405 (a b c : β) (t : β β β) (hβ : t 0 = 0) (hβ : t 1 = 1) |
|
(hβ : β n > 1, t n = t (n - 2) + t (n - 1)) (hβ : a β‘ 5 [MOD 16]) (hβ : b β‘ 10 [MOD 16]) |
|
(hβ
: c β‘ 15 [MOD 16]) : (t a + t b + t c) % 7 = 5 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_110 (a b : β) (hβ : 0 < a β§ 0 < b β§ b β€ a) (hβ : (a + b) % 10 = 2) |
|
(hβ : (2 * a + b) % 10 = 1) : (a - b) % 10 = 6 := by |
|
sorry |
|
|
|
theorem amc12a_2003_p25 (a b : β) (f : β β β) (hβ : 0 < b) |
|
(hβ : β x, f x = Real.sqrt (a * x ^ 2 + b * x)) (hβ : { x | 0 β€ f x } = f '' { x | 0 β€ f x }) : |
|
a = 0 β¨ a = -4 := by |
|
sorry |
|
|
|
theorem amc12a_2010_p10 (p q : β) (a : β β β) (hβ : β n, a (n + 2) - a (n + 1) = a (n + 1) - a n) |
|
(hβ : a 1 = p) (hβ : a 2 = 9) (hβ : a 3 = 3 * p - q) (hβ : a 4 = 3 * p + q) : a 2010 = 8041 := by |
|
sorry |
|
|
|
theorem mathd_algebra_509 : |
|
Real.sqrt ((5 / Real.sqrt 80 + Real.sqrt 845 / 9 + Real.sqrt 45) / Real.sqrt 5) = 13 / 6 := by |
|
sorry |
|
|
|
theorem mathd_algebra_159 (b : β) (f : β β β) |
|
(hβ : β x, f x = 3 * x ^ 4 - 7 * x ^ 3 + 2 * x ^ 2 - b * x + 1) (hβ : f 1 = 1) : b = -2 := by |
|
|
|
simp_all only [rpow_two, one_rpow, mul_one, one_pow, add_left_eq_self] |
|
linarith |
|
|
|
theorem aime_1997_p11 (x : β) |
|
(hβ : |
|
x = |
|
(β n in Finset.Icc (1 : β) 44, Real.cos (n * Ο / 180)) / |
|
β n in Finset.Icc (1 : β) 44, Real.sin (n * Ο / 180)) : |
|
Int.floor (100 * x) = 241 := by |
|
sorry |
|
|
|
theorem aimeI_2000_p7 (x y z : β) (m : β) (hβ : 0 < x β§ 0 < y β§ 0 < z) (hβ : x * y * z = 1) |
|
(hβ : x + 1 / z = 5) (hβ : y + 1 / x = 29) (hβ : z + 1 / y = m) (hβ
: 0 < m) : |
|
βm.den + m.num = 5 := by |
|
sorry |
|
|
|
theorem aime_1988_p4 (n : β) (a : β β β) (hβ : β n, abs (a n) < 1) |
|
(hβ : (β k in Finset.range n, abs (a k)) = 19 + abs (β k in Finset.range n, a k)) : 20 β€ n := by |
|
sorry |
|
|
|
theorem induction_divisibility_9div10tonm1 (n : β) (hβ : 0 < n) : 9 β£ 10 ^ n - 1 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_126 (x a : β) (hβ : 0 < x β§ 0 < a) (hβ : Nat.gcd a 40 = x + 3) |
|
(hβ : Nat.lcm a 40 = x * (x + 3)) |
|
(hβ : β b : β, 0 < b β Nat.gcd b 40 = x + 3 β§ Nat.lcm b 40 = x * (x + 3) β a β€ b) : a = 8 := by |
|
sorry |
|
|
|
theorem mathd_algebra_323 (Ο : Equiv β β) (h : β x, Ο.1 x = x ^ 3 - 8) : Ο.2 (Ο.1 (Ο.2 19)) = 3 := by |
|
sorry |
|
|
|
theorem mathd_algebra_421 (a b c d : β) (hβ : b = a ^ 2 + 4 * a + 6) |
|
(hβ : b = 1 / 2 * a ^ 2 + a + 6) (hβ : d = c ^ 2 + 4 * c + 6) (hβ : d = 1 / 2 * c ^ 2 + c + 6) |
|
(hβ : a < c) : c - a = 6 := by |
|
sorry |
|
|
|
theorem imo_1987_p6 (p : β) (f : β β β) (hβ : β x, f x = x ^ 2 + x + p) |
|
(hβ : β k : β, k β€ Nat.floor (Real.sqrt (p / 3)) β Nat.Prime (f k)) : |
|
β i β€ p - 2, Nat.Prime (f i) := by |
|
sorry |
|
|
|
theorem amc12a_2009_p25 (a : β β β) (hβ : a 1 = 1) (hβ : a 2 = 1 / Real.sqrt 3) |
|
(hβ : β n, 1 β€ n β a (n + 2) = (a n + a (n + 1)) / (1 - a n * a (n + 1))) : abs (a 2009) = 0 := by |
|
sorry |
|
|
|
|
|
theorem imo_1961_p1 (x y z a b : β) (hβ : 0 < x β§ 0 < y β§ 0 < z) (hβ : x β y) (hβ : y β z) |
|
(hβ : z β x) (hβ : x + y + z = a) (hβ
: x ^ 2 + y ^ 2 + z ^ 2 = b ^ 2) (hβ : x * y = z ^ 2) : |
|
0 < a β§ b ^ 2 < a ^ 2 β§ a ^ 2 < 3 * b ^ 2 := by |
|
sorry |
|
|
|
theorem mathd_algebra_31 (x : NNReal) (u : β β NNReal) (hβ : β n, u (n + 1) = NNReal.sqrt (x + u n)) |
|
(hβ : Filter.Tendsto u Filter.atTop (π 9)) : 9 = NNReal.sqrt (x + 9) := by |
|
sorry |
|
|
|
theorem algebra_manipexpr_apbeq2cceqiacpbceqm2 (a b c : β) (hβ : a + b = 2 * c) |
|
(hβ : c = Complex.I) : a * c + b * c = -2 := by |
|
rw [β add_mul, hβ, hβ, mul_assoc, Complex.I_mul_I] |
|
ring |
|
|
|
theorem mathd_numbertheory_370 (n : β) (hβ : n % 7 = 3) : (2 * n + 1) % 7 = 0 := by |
|
sorry |
|
|
|
theorem mathd_algebra_437 (x y : β) (n : β€) (hβ : x ^ 3 = -45) (hβ : y ^ 3 = -101) (hβ : x < n) |
|
(hβ : βn < y) : n = -4 := by |
|
sorry |
|
|
|
|
|
|
|
theorem imo_1966_p5 (x a : β β β) (hβ : a 1 β a 2) (hβ : a 1 β a 3) (hβ : a 1 β a 4) |
|
(hβ : a 2 β a 3) (hβ : a 2 β a 4) (hβ
: a 3 β a 4) (hβ : a 1 > a 2) (hβ : a 2 > a 3) |
|
(hβ : a 3 > a 4) |
|
(hβ : abs (a 1 - a 2) * x 2 + abs (a 1 - a 3) * x 3 + abs (a 1 - a 4) * x 4 = 1) |
|
(hββ : abs (a 2 - a 1) * x 1 + abs (a 2 - a 3) * x 3 + abs (a 2 - a 4) * x 4 = 1) |
|
(hββ : abs (a 3 - a 1) * x 1 + abs (a 3 - a 2) * x 2 + abs (a 3 - a 4) * x 4 = 1) |
|
(hββ : abs (a 4 - a 1) * x 1 + abs (a 4 - a 2) * x 2 + abs (a 4 - a 3) * x 3 = 1) : |
|
x 2 = 0 β§ x 3 = 0 β§ x 1 = 1 / abs (a 1 - a 4) β§ x 4 = 1 / abs (a 1 - a 4) := by |
|
sorry |
|
|
|
theorem mathd_algebra_89 (b : β) (hβ : b β 0) : |
|
(7 * b ^ 3) ^ 2 * (4 * b ^ 2) ^ (-(3 : β€)) = 49 / 64 := by |
|
sorry |
|
|
|
theorem imo_1966_p4 (n : β) (x : β) (hβ : β k : β, 0 < k β β m : β€, x β m * Ο / 2 ^ k) |
|
(hβ : 0 < n) : |
|
(β k in Finset.Icc 1 n, 1 / Real.sin (2 ^ k * x)) = 1 / Real.tan x - 1 / Real.tan (2 ^ n * x) := by |
|
sorry |
|
|
|
theorem mathd_algebra_67 (f g : β β β) (hβ : β x, f x = 5 * x + 3) (hβ : β x, g x = x ^ 2 - 2) : |
|
g (f (-1)) = 2 := by |
|
|
|
simp_all only [rpow_two, mul_neg, mul_one] |
|
norm_num |
|
|
|
theorem mathd_numbertheory_326 (n : β€) (hβ : (n - 1) * n * (n + 1) = 720 ) : n + 1 = 10 := by |
|
sorry |
|
|
|
theorem induction_divisibility_3div2tooddnp1 (n : β) : 3 β£ 2 ^ (2 * n + 1) + 1 := by |
|
sorry |
|
|
|
theorem mathd_algebra_123 (a b : β) (hβ : 0 < a β§ 0 < b) (hβ : a + b = 20) (hβ : a = 3 * b) : |
|
a - b = 10 := by |
|
sorry |
|
|
|
theorem algebra_2varlineareq_xpeeq7_2xpeeq3_eeq11_xeqn4 (x e : β) (hβ : x + e = 7) |
|
(hβ : 2 * x + e = 3) : e = 11 β§ x = -4 := by |
|
sorry |
|
|
|
theorem imo_1993_p5 : β f : β β β, f 1 = 2 β§ β n, f (f n) = f n + n β§ β n, f n < f (n + 1) := by |
|
sorry |
|
|
|
theorem numbertheory_prmdvsneqnsqmodpeq0 (n : β€) (p : β) (hβ : Nat.Prime p) : |
|
βp β£ n β n ^ 2 % p = 0 := by |
|
sorry |
|
|
|
theorem imo_1964_p1_1 (n : β) (hβ : 7 β£ 2 ^ n - 1) : 3 β£ n := by |
|
sorry |
|
|
|
theorem imo_1990_p3 (n : β) (hβ : 2 β€ n) (hβ : n ^ 2 β£ 2 ^ n + 1) : n = 3 := by |
|
sorry |
|
|
|
theorem induction_ineq_nsqlefactn (n : β) (hβ : 4 β€ n) : n ^ 2 β€ n ! := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_30 : |
|
(33818 ^ 2 + 33819 ^ 2 + 33820 ^ 2 + 33821 ^ 2 + 33822 ^ 2) % 17 = 0 := by |
|
|
|
apply Eq.refl |
|
|
|
theorem mathd_algebra_267 (x : β) (hβ : x β 1) (hβ : x β -2) |
|
(hβ : (x + 1) / (x - 1) = (x - 2) / (x + 2)) : x = 0 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_961 : 2003 % 11 = 1 := by |
|
|
|
apply Eq.refl |
|
|
|
theorem induction_seq_mul2pnp1 (n : β) (u : β β β) (hβ : u 0 = 0) |
|
(hβ : β n, u (n + 1) = 2 * u n + (n + 1)) : u n = 2 ^ (n + 1) - (n + 2) := by |
|
sorry |
|
|
|
theorem amc12a_2002_p12 (f : β β β) (k : β) (a b : β) (hβ : β x, f x = x ^ 2 - 63 * x + k) |
|
(hβ : f a = 0 β§ f b = 0) (hβ : a β b) (hβ : Nat.Prime a β§ Nat.Prime b) : k = 122 := by |
|
sorry |
|
|
|
theorem algebra_manipexpr_2erprsqpesqeqnrpnesq (e r : β) : |
|
2 * (e * r) + (e ^ 2 + r ^ 2) = (-r + -e) ^ 2 := by |
|
|
|
ring |
|
|
|
theorem mathd_algebra_119 (d e : β) (hβ : 2 * d = 17 * e - 8) (hβ : 2 * e = d - 9) : e = 2 := by |
|
|
|
linarith |
|
|
|
theorem amc12a_2020_p13 (a b c : β) (n : NNReal) (hβ : n β 1) (hβ : 1 < a β§ 1 < b β§ 1 < c) |
|
(hβ : (n * (n * n ^ (1 / c)) ^ (1 / b)) ^ (1 / a) = (n ^ 25) ^ (1 / 36)) : b = 3 := by |
|
sorry |
|
|
|
|
|
|
|
theorem imo_1977_p5 (a b q r : β) (hβ : r < a + b) (hβ : a ^ 2 + b ^ 2 = (a + b) * q + r) |
|
(hβ : q ^ 2 + r = 1977) : |
|
abs ((a : β€) - 22) = 15 β§ abs ((b : β€) - 22) = 28 β¨ |
|
abs ((a : β€) - 22) = 28 β§ abs ((b : β€) - 22) = 15 := by |
|
sorry |
|
|
|
theorem numbertheory_2dvd4expn (n : β) (hβ : n β 0) : 2 β£ 4 ^ n := by |
|
revert n hβ |
|
rintro β¨k, rflβ© |
|
Β· norm_num |
|
apply dvd_pow |
|
norm_num |
|
|
|
theorem amc12a_2010_p11 (x b : β) (hβ : 0 < b) (hβ : (7 : β) ^ (x + 7) = 8 ^ x) |
|
(hβ : x = Real.logb b (7 ^ 7)) : b = 8 / 7 := by |
|
sorry |
|
|
|
theorem amc12a_2003_p24 : |
|
IsGreatest { y : β | β a b : β, 1 < b β§ b β€ a β§ y = Real.logb a (a / b) + Real.logb b (b / a) } |
|
0 := by |
|
sorry |
|
|
|
theorem amc12a_2002_p1 (f : β β β) (hβ : β x, f x = (2 * x + 3) * (x - 4) + (2 * x + 3) * (x - 6)) |
|
(hβ : Fintype (f β»ΒΉ' {0})) : (β y in (f β»ΒΉ' {0}).toFinset, y) = 7 / 2 := by |
|
sorry |
|
|
|
theorem mathd_algebra_206 (a b : β) (f : β β β) (hβ : β x, f x = x ^ 2 + a * x + b) (hβ : 2 * a β b) |
|
(hβ : f (2 * a) = 0) (hβ : f b = 0) : a + b = -1 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_92 (n : β) (hβ : 5 * n % 17 = 8) : n % 17 = 5 := by |
|
sorry |
|
|
|
theorem mathd_algebra_482 (m n : β) (k : β) (f : β β β) (hβ : Nat.Prime m) (hβ : Nat.Prime n) |
|
(hβ : β x, f x = x ^ 2 - 12 * x + k) (hβ : f m = 0) (hβ : f n = 0) (hβ
: m β n) : k = 35 := by |
|
sorry |
|
|
|
theorem amc12b_2002_p3 (S : Finset β) |
|
|
|
(hβ : β n : β, n β S β 0 < n β§ Nat.Prime (n ^ 2 + 2 - 3 * n)) : |
|
S.card = 1 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_668 (l r : ZMod 7) (hβ : l = (2 + 3)β»ΒΉ) (hβ : r = 2β»ΒΉ + 3β»ΒΉ) : |
|
l - r = 1 := by |
|
|
|
aesop_subst [hβ, hβ] |
|
apply Eq.refl |
|
|
|
theorem mathd_algebra_251 (x : β) (hβ : x β 0) (hβ : 3 + 1 / x = 7 / x) : x = 2 := by |
|
|
|
simp_all only [ne_eq, one_div] |
|
field_simp [hβ] at hβ |
|
linarith |
|
|
|
theorem mathd_numbertheory_84 : Int.floor ((9 : β) / 160 * 100) = 5 := by |
|
rw [Int.floor_eq_iff] |
|
constructor |
|
all_goals norm_num |
|
|
|
theorem mathd_numbertheory_412 (x y : β€) (hβ : x % 19 = 4) (hβ : y % 19 = 7) : |
|
(x + 1) ^ 2 * (y + 5) ^ 3 % 19 = 13 := by |
|
sorry |
|
|
|
theorem mathd_algebra_181 (n : β) (hβ : n β 3) (hβ : (n + 5) / (n - 3) = 2) : n = 11 := by |
|
rw [div_eq_iff] at hβ |
|
linarith |
|
exact sub_ne_zero.mpr hβ |
|
|
|
/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (y Β«expr β Β» 0) -/ |
|
theorem amc12a_2016_p3 (f : β β β β β) |
|
(hβ : β x, β (y) (_ : y β 0), f x y = x - y * Int.floor (x / y)) : |
|
f (3 / 8) (-(2 / 5)) = -(1 / 40) := by |
|
sorry |
|
|
|
/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (n Β«expr = Β» 3) -/ |
|
theorem mathd_algebra_247 (t s : β) (n : β€) (hβ : t = 2 * s - s ^ 2) (hβ : s = n ^ 2 - 2 ^ n + 1) |
|
(n) (_ : n = 3) : t = 0 := by |
|
sorry |
|
|
|
theorem algebra_sqineq_2unitcircatblt1 (a b : β) (hβ : a ^ 2 + b ^ 2 = 2) : a * b β€ 1 := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_629 : IsLeast { t : β | 0 < t β§ Nat.lcm 12 t ^ 3 = (12 * t) ^ 2 } 18 := |
|
by sorry |
|
|
|
theorem amc12a_2017_p2 (x y : β) (hβ : x β 0) (hβ : y β 0) (hβ : x + y = 4 * (x * y)) : |
|
1 / x + 1 / y = 4 := by |
|
|
|
simp_all only [ne_eq, one_div] |
|
field_simp |
|
rwa [add_comm] |
|
|
|
theorem algebra_amgm_sumasqdivbsqgeqsumbdiva (a b c : β) (hβ : 0 < a β§ 0 < b β§ 0 < c) : |
|
a ^ 2 / b ^ 2 + b ^ 2 / c ^ 2 + c ^ 2 / a ^ 2 β₯ b / a + c / b + a / c := by |
|
sorry |
|
|
|
theorem mathd_numbertheory_202 : (19 ^ 19 + 99 ^ 99) % 10 = 8 := by |
|
|
|
apply Eq.refl |
|
|
|
theorem imo_1979_p1 (p q : β) (hβ : 0 < q) |
|
(hβ : (β k in Finset.Icc (1 : β) 1319, (-1) ^ (k + 1) * ((1 : β) / k)) = p / q) : 1979 β£ p := |
|
sorry |
|
|
|
theorem mathd_algebra_51 (a b : β) (hβ : 0 < a β§ 0 < b) (hβ : a + b = 35) (hβ : a = 2 / 5 * b) : |
|
b - a = 15 := by |
|
|
|
aesop_subst hβ |
|
unhygienic with_reducible aesop_destruct_products |
|
simp_all only [gt_iff_lt, mul_pos_iff_of_pos_right] |
|
linarith |
|
|
|
theorem mathd_algebra_10 : abs ((120 : β) / 100 * 30 - 130 / 100 * 20) = 10 := by |
|
|
|
norm_num |
|
|