File size: 42,295 Bytes
32b6f1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 |
/-
Copyright (c) 2021 OpenAI. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kunhao Zheng, Stanislas Polu, David Renshaw, OpenAI GPT-f
! This file was ported from Lean 3 source module valid and edited by Kaiyu Yang.
-/
import MiniF2F.Minif2fImport
open BigOperators Real Nat Topology
theorem amc12a_2019_p21 (z : β) (hβ : z = (1 + Complex.I) / Real.sqrt 2) :
((β k : β€ in Finset.Icc 1 12, z ^ k ^ 2) * (β k : β€ in Finset.Icc 1 12, 1 / z ^ k ^ 2)) = 36 := by
sorry
theorem amc12a_2015_p10 (x y : β€) (hβ : 0 < y) (hβ : y < x) (hβ : x + y + x * y = 80) : x = 26 := by
sorry
theorem amc12a_2008_p8 (x y : β) (hβ : 0 < x β§ 0 < y) (hβ : y ^ 3 = 1)
(hβ : 6 * x ^ 2 = 2 * (6 * y ^ 2)) : x ^ 3 = 2 * Real.sqrt 2 := by
sorry
theorem mathd_algebra_182 (y : β) : 7 * (3 * y + 2) = 21 * y + 14 := by
-- aesop?
ring
theorem aime_1984_p5 (a b : β) (hβ : Real.logb 8 a + Real.logb 4 (b ^ 2) = 5)
(hβ : Real.logb 8 b + Real.logb 4 (a ^ 2) = 7) : a * b = 512 := by
sorry
theorem mathd_numbertheory_780 (m x : β€) (hβ : 0 β€ x) (hβ : 10 β€ m β§ m β€ 99) (hβ : 6 * x % m = 1)
(hβ : (x - 6 ^ 2) % m = 0) : m = 43 := by
sorry
theorem mathd_algebra_116 (k x : β) (hβ : x = (13 - Real.sqrt 131) / 4)
(hβ : 2 * x ^ 2 - 13 * x + k = 0) : k = 19 / 4 := by
rw [hβ] at hβ
rw [eq_comm.mp (add_eq_zero_iff_neg_eq.mp hβ)]
norm_num
rw [pow_two]
rw [mul_sub]
rw [sub_mul, sub_mul]
rw [Real.mul_self_sqrt _]
ring
linarith
theorem mathd_numbertheory_13 (u v : β) (S : Set β)
(hβ : β n : β, n β S β 0 < n β§ 14 * n % 100 = 46) (hβ : IsLeast S u)
(hβ : IsLeast (S \ {u}) v) : (u + v : β) / 2 = 64 := by
sorry
theorem mathd_numbertheory_169 : Nat.gcd 20! 200000 = 40000 := by
-- aesop?
apply Eq.refl
theorem amc12a_2009_p9 (a b c : β) (f : β β β) (hβ : β x, f (x + 3) = 3 * x ^ 2 + 7 * x + 4)
(hβ : β x, f x = a * x ^ 2 + b * x + c) : a + b + c = 2 := by
sorry
theorem amc12a_2019_p9 (a : β β β) (hβ : a 1 = 1) (hβ : a 2 = 3 / 7)
(hβ : β n, a (n + 2) = a n * a (n + 1) / (2 * a n - a (n + 1))) :
β(a 2019).den + (a 2019).num = 8078 := by
sorry
theorem mathd_algebra_13 (a b : β)
(hβ : β x, x - 3 β 0 β§ x - 5 β 0 β 4 * x / (x ^ 2 - 8 * x + 15) = a / (x - 3) + b / (x - 5)) :
a = -6 β§ b = 10 := by
sorry
theorem induction_sum2kp1npqsqm1 (n : β) :
β k in Finset.range n, (2 * k + 3) = (n + 1) ^ 2 - 1 := by
sorry
theorem aime_1991_p6 (r : β) (hβ : (β k in Finset.Icc (19 : β) 91, Int.floor (r + k / 100)) = 546) :
Int.floor (100 * r) = 743 := by
sorry
theorem mathd_numbertheory_149 :
(β k in Finset.filter (fun x => x % 8 = 5 β§ x % 6 = 3) (Finset.range 50), k) = 66 := by
-- aesop?
apply Eq.refl
theorem imo_1984_p2 (a b : β€) (hβ : 0 < a β§ 0 < b) (hβ : Β¬7 β£ a) (hβ : Β¬7 β£ b) (hβ : Β¬7 β£ a + b)
(hβ : 7 ^ 7 β£ (a + b) ^ 7 - a ^ 7 - b ^ 7) : 19 β€ a + b := by
sorry
theorem amc12a_2008_p4 : (β k in Finset.Icc (1 : β) 501, ((4 : β) * k + 4) / (4 * k)) = 502 := by
sorry
theorem imo_2006_p6 (a b c : β) :
a * b * (a ^ 2 - b ^ 2) + b * c * (b ^ 2 - c ^ 2) + c * a * (c ^ 2 - a ^ 2) β€
9 * Real.sqrt 2 / 32 * (a ^ 2 + b ^ 2 + c ^ 2) ^ 2 := by
sorry
theorem mathd_algebra_462 : ((1 : β) / 2 + 1 / 3) * (1 / 2 - 1 / 3) = 5 / 36 := by
-- aesop?
simp_all only [one_div]
norm_num
theorem imo_1964_p1_2 (n : β) : Β¬7 β£ 2 ^ n + 1 := by
sorry
theorem mathd_numbertheory_221 (S : Finset β)
(hβ : β x : β, x β S β 0 < x β§ x < 1000 β§ x.divisors.card = 3) : S.card = 11 := by
sorry
theorem mathd_numbertheory_64 : IsLeast { x : β | 30 * x β‘ 42 [MOD 47] } 39 := by
sorry
theorem imo_1987_p4 (f : β β β) : β n, f (f n) β n + 1987 := by
sorry
theorem mathd_numbertheory_33 (n : β) (hβ : n < 398) (hβ : n * 7 % 398 = 1) : n = 57 := by
sorry
theorem amc12_2001_p9 (f : β β β) (hβ : β x > 0, β y > 0, f (x * y) = f x / y) (hβ : f 500 = 3) :
f 600 = 5 / 2 := by
specialize hβ 500 _ (6 / 5) _
Β· linarith
Β· linarith
calc
f 600 = f (500 * (6 / 5)) := by
congr
norm_num
_ = f 500 / (6 / 5) := by rw [hβ]
_ = 3 / (6 / 5) := by rw [hβ]
_ = 5 / 2 := by norm_num
-- Solution encoded in theorem statement
theorem imo_1965_p1 (x : β) (hβ : 0 β€ x) (hβ : x β€ 2 * Ο)
(hβ : 2 * Real.cos x β€ abs (Real.sqrt (1 + Real.sin (2 * x)) - Real.sqrt (1 - Real.sin (2 * x))))
(hβ : abs (Real.sqrt (1 + Real.sin (2 * x)) - Real.sqrt (1 - Real.sin (2 * x))) β€ Real.sqrt 2) :
Ο / 4 β€ x β§ x β€ 7 * Ο / 4 := by
sorry
theorem mathd_numbertheory_48 (b : β) (hβ : 0 < b) (hβ : 3 * b ^ 2 + 2 * b + 1 = 57) : b = 4 := by
-- aesop?
simp_all only [succ.injEq]
apply le_antisymm
Β· nlinarith
Β· nlinarith
theorem numbertheory_sqmod4in01d (a : β€) : a ^ 2 % 4 = 0 β¨ a ^ 2 % 4 = 1 := by
sorry
theorem mathd_numbertheory_466 : (β k in Finset.range 11, k) % 9 = 1 := by
-- aesop?
apply Eq.refl
theorem mathd_algebra_48 (q e : β) (hβ : q = 9 - 4 * Complex.I) (hβ : e = -3 - 4 * Complex.I) :
q - e = 12 := by
-- aesop?
aesop_subst [hβ, hβ]
simp_all only [sub_sub_sub_cancel_right, sub_neg_eq_add]
norm_num
theorem amc12_2000_p15 (f : β β β) (hβ : β x, f (x / 3) = x ^ 2 + x + 1)
(hβ : Fintype (f β»ΒΉ' {7})) : (β y in (f β»ΒΉ' {7}).toFinset, y / 3) = -1 / 9 := by
sorry
theorem mathd_numbertheory_132 : 2004 % 12 = 0 := by
-- aesop?
apply Eq.refl
theorem amc12a_2009_p5 (x : β) (hβ : x ^ 3 - (x + 1) * (x - 1) * x = 5) : x ^ 3 = 125 := by
sorry
theorem mathd_numbertheory_188 : Nat.gcd 180 168 = 12 := by
apply Eq.refl
theorem mathd_algebra_224 (S : Finset β)
(hβ : β n : β, n β S β Real.sqrt n < 7 / 2 β§ 2 < Real.sqrt n) : S.card = 8 := by
sorry
theorem induction_divisibility_3divnto3m2n (n : β) : 3 β£ n ^ 3 + 2 * n := by
sorry
theorem induction_sum_1oktkp1 (n : β) :
(β k in Finset.range n, (1 : β) / ((k + 1) * (k + 2))) = n / (n + 1) := by
sorry
theorem mathd_numbertheory_32 (S : Finset β) (hβ : β n : β, n β S β n β£ 36) : (β k in S, k) = 91 := by
sorry
theorem mathd_algebra_422 (x : β) (Ο : Equiv β β) (hβ : β x, Ο.1 x = 5 * x - 12)
(hβ : Ο.1 (x + 1) = Ο.2 x) : x = 47 / 24 := by
sorry
theorem amc12b_2002_p11 (a b : β) (hβ : Nat.Prime a) (hβ : Nat.Prime b) (hβ : Nat.Prime (a + b))
(hβ : Nat.Prime (a - b)) : Nat.Prime (a + b + (a - b + (a + b))) := by
sorry
theorem mathd_algebra_73 (p q r x : β) (hβ : (x - p) * (x - q) = (r - p) * (r - q)) (hβ : x β r) :
x = p + q - r := by
sorry
theorem mathd_numbertheory_109 (v : β β β) (hβ : β n, v n = 2 * n - 1) :
(β k in Finset.Icc 1 100, v k) % 7 = 4 := by
-- aesop?
simp_all only [ge_iff_le, gt_iff_lt, lt_one_iff]
apply Eq.refl
theorem algebra_xmysqpymzsqpzmxsqeqxyz_xpypzp6dvdx3y3z3 (x y z : β€)
(hβ : (x - y) ^ 2 + (y - z) ^ 2 + (z - x) ^ 2 = x * y * z) :
x + y + z + 6 β£ x ^ 3 + y ^ 3 + z ^ 3 := by
sorry
-- Solution encoded in theorem statement.
-- What can be counted as a "solution"? The set of solutions is infinite. Does it have to be computable?
theorem imo_1962_p4 (S : Set β)
(hβ : S = { x : β | Real.cos x ^ 2 + Real.cos (2 * x) ^ 2 + Real.cos (3 * x) ^ 2 = 1 }) :
S =
{ x : β |
β m : β€,
x = Ο / 2 + m * Ο β¨
x = Ο / 4 + m * Ο / 2 β¨ x = Ο / 6 + m * Ο / 6 β¨ x = 5 * Ο / 6 + m * Ο / 6 } := by
sorry
theorem mathd_numbertheory_236 : 1999 ^ 2000 % 5 = 1 := by
-- aesop?
apply Eq.refl
theorem mathd_numbertheory_24 : (β k in Finset.Icc 1 9, 11 ^ k) % 100 = 59 := by
-- aesop?
apply Eq.refl
theorem algebra_amgm_prod1toneq1_sum1tongeqn (a : β β NNReal) (n : β)
(hβ : Finset.prod (Finset.range n) a = 1) : Finset.sum (Finset.range n) a β₯ n := by
sorry
theorem mathd_algebra_101 (x : β) (hβ : x ^ 2 - 5 * x - 4 β€ 10) : x β₯ -2 β§ x β€ 7 := by
-- aesop?
simp_all only [rpow_two, tsub_le_iff_right, ge_iff_le]
apply And.intro
Β· nlinarith
Β· nlinarith
theorem mathd_numbertheory_257 (x : β) (hβ : 1 β€ x β§ x β€ 100)
(hβ : 77 β£ (β k in Finset.range 101, k) - x) : x = 45 := by
sorry
theorem amc12_2000_p5 (x p : β) (hβ : x < 2) (hβ : abs (x - 2) = p) : x - p = 2 - 2 * p := by
suffices abs (x - 2) = -(x - 2) by
rw [hβ] at this
linarith
apply abs_of_neg
linarith
theorem mathd_algebra_547 (x y : β) (hβ : x = 5) (hβ : y = 2) : Real.sqrt (x ^ 3 - 2 ^ y) = 11 := by
sorry
theorem mathd_numbertheory_200 : 139 % 11 = 7 := by
-- aesop?
apply Eq.refl
theorem mathd_algebra_510 (x y : β) (hβ : x + y = 13) (hβ : x * y = 24) :
Real.sqrt (x ^ 2 + y ^ 2) = 11 := by
sorry
theorem mathd_algebra_140 (a b c : β) (hβ : 0 < a β§ 0 < b β§ 0 < c)
(hβ : β x, 24 * x ^ 2 - 19 * x - 35 = (a * x - 5) * (2 * (b * x) + c)) : a * b - 3 * c = -9 := by
sorry
theorem mathd_algebra_455 (x : β) (hβ : 2 * (2 * (2 * (2 * x))) = 48) : x = 3 := by
-- aesop?
linarith
theorem mathd_numbertheory_45 : Nat.gcd 6432 132 + 11 = 23 := by
-- aesop?
simp_all only [succ.injEq]
apply Eq.refl
theorem aime_1994_p4 (n : β) (hβ : 0 < n)
(hβ : (β k in Finset.Icc 1 n, Int.floor (Real.logb 2 k)) = 1994) : n = 312 := by
sorry
theorem mathd_numbertheory_739 : 9! % 10 = 0 := by
-- aesop?
apply Eq.refl
theorem mathd_algebra_245 (x : β) (hβ : x β 0) :
(4 / x)β»ΒΉ * (3 * x ^ 3 / x) ^ 2 * (1 / (2 * x))β»ΒΉ ^ 3 = 18 * x ^ 8 := by
sorry
theorem algebra_apb4leq8ta4pb4 (a b : β) (hβ : 0 < a β§ 0 < b) : (a + b) ^ 4 β€ 8 * (a ^ 4 + b ^ 4) := by
sorry
theorem mathd_algebra_28 (c : β) (f : β β β) (hβ : β x, f x = 2 * x ^ 2 + 5 * x + c)
(hβ : β x, f x β€ 0) : c β€ 25 / 8 := by
sorry
theorem mathd_numbertheory_543 : (β k in Nat.divisors (30 ^ 4), 1) - 2 = 123 := by
sorry -- simp stucks
theorem mathd_algebra_480 (f : β β β) (hβ : β x < 0, f x = -x ^ 2 - 1)
(hβ : β x, 0 β€ x β§ x < 4 β f x = 2) (hβ : β x β₯ 4, f x = Real.sqrt x) : f Ο = 2 := by
sorry
theorem mathd_algebra_69 (rows seats : β) (hβ : rows * seats = 450)
(hβ : (rows + 5) * (seats - 3) = 450) : rows = 25 := by
sorry
theorem mathd_algebra_433 (f : β β β) (hβ : β x, f x = 3 * Real.sqrt (2 * x - 7) - 8) : f 8 = 19 := by
sorry
theorem mathd_algebra_126 (x y : β) (hβ : 2 * 3 = x - 9) (hβ : 2 * -5 = y + 1) : x = 15 β§ y = -11 := by
-- aesop?
simp_all only [mul_neg]
apply And.intro
Β· linarith
Β· linarith
theorem aimeII_2020_p6 (t : β β β) (hβ : t 1 = 20) (hβ : t 2 = 21)
(hβ : β n β₯ 3, t n = (5 * t (n - 1) + 1) / (25 * t (n - 2))) :
β(t 2020).den + (t 2020).num = 626 := by
sorry
theorem amc12a_2008_p2 (x : β) (hβ : x * (1 / 2 + 2 / 3) = 1) : x = 6 / 7 := by
-- aesop?
simp_all only [one_div]
linarith
theorem mathd_algebra_35 (p q : β β β) (hβ : β x, p x = 2 - x ^ 2)
(hβ : β x : β, x β 0 β q x = 6 / x) : p (q 2) = -7 := by
-- aesop?
simp_all only [rpow_two, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, div_pow]
norm_num
theorem algebra_amgm_faxinrrp2msqrt2geq2mxm1div2x :
β x > 0, 2 - Real.sqrt 2 β₯ 2 - x - 1 / (2 * x) := by
intros x h
sorry
theorem mathd_numbertheory_335 (n : β) (hβ : n % 7 = 5) : 5 * n % 7 = 4 := by
rw [Nat.mul_mod, hβ]
theorem mathd_numbertheory_35 (S : Finset β) (hβ : β n : β, n β£ Nat.sqrt 196) :
(β k in S, k) = 24 := by
sorry
theorem amc12a_2021_p7 (x y : β) : 1 β€ (x * y - 1) ^ 2 + (x + y) ^ 2 := by
simp only [sub_eq_add_neg, add_right_comm]
ring
nlinarith
theorem mathd_algebra_327 (a : β) (hβ : 1 / 5 * abs (9 + 2 * a) < 1) : -7 < a β§ a < -2 := by
have hβ := (mul_lt_mul_left (show 0 < (5 : β) by linarith)).mpr hβ
have hβ : abs (9 + 2 * a) < 5 := by linarith
have hβ := abs_lt.mp hβ
cases' hβ with hβ hβ
constructor <;> nlinarith
theorem aime_1984_p15 (x y z w : β)
(hβ :
x ^ 2 / (2 ^ 2 - 1) + y ^ 2 / (2 ^ 2 - 3 ^ 2) + z ^ 2 / (2 ^ 2 - 5 ^ 2) +
w ^ 2 / (2 ^ 2 - 7 ^ 2) =
1)
(hβ :
x ^ 2 / (4 ^ 2 - 1) + y ^ 2 / (4 ^ 2 - 3 ^ 2) + z ^ 2 / (4 ^ 2 - 5 ^ 2) +
w ^ 2 / (4 ^ 2 - 7 ^ 2) =
1)
(hβ :
x ^ 2 / (6 ^ 2 - 1) + y ^ 2 / (6 ^ 2 - 3 ^ 2) + z ^ 2 / (6 ^ 2 - 5 ^ 2) +
w ^ 2 / (6 ^ 2 - 7 ^ 2) =
1)
(hβ :
x ^ 2 / (8 ^ 2 - 1) + y ^ 2 / (8 ^ 2 - 3 ^ 2) + z ^ 2 / (8 ^ 2 - 5 ^ 2) +
w ^ 2 / (8 ^ 2 - 7 ^ 2) =
1) :
x ^ 2 + y ^ 2 + z ^ 2 + w ^ 2 = 36 := by
sorry
theorem algebra_amgm_sqrtxymulxmyeqxpy_xpygeq4 (x y : β) (hβ : 0 < x β§ 0 < y) (hβ : y β€ x)
(hβ : Real.sqrt (x * y) * (x - y) = x + y) : x + y β₯ 4 := by
sorry
theorem amc12a_2002_p21 (u : β β β) (hβ : u 0 = 4) (hβ : u 1 = 7)
(hβ : β n β₯ 2, u (n + 2) = (u n + u (n + 1)) % 10) :
β n, (β k in Finset.range n, u k) > 10000 β 1999 β€ n := by sorry
theorem mathd_algebra_192 (q e d : β) (hβ : q = 11 - 5 * Complex.I) (hβ : e = 11 + 5 * Complex.I)
(hβ : d = 2 * Complex.I) : q * e * d = 292 * Complex.I := by
-- aesop?
sorry
theorem amc12b_2002_p6 (a b : β) (hβ : a β 0 β§ b β 0)
(hβ : β x, x ^ 2 + a * x + b = (x - a) * (x - b)) : a = 1 β§ b = -2 := by
sorry
theorem mathd_numbertheory_102 : 2 ^ 8 % 5 = 1 := by
-- aesop?
apply Eq.refl
theorem amc12a_2010_p22 (x : β) : 49 β€ β k:β€ in Finset.Icc 1 119, abs (βk * x - 1) := by
sorry
theorem mathd_numbertheory_81 : 71 % 3 = 2 := by
-- aesop?
apply Eq.refl
theorem mathd_numbertheory_155 :
Finset.card (Finset.filter (fun x => x % 19 = 7) (Finset.Icc 100 999)) = 48 := by
-- aesop?
apply Eq.refl
theorem imo_1978_p5 (n : β) (a : β β β) (hβ : Function.Injective a) (hβ : a 0 = 0) (hβ : 0 < n) :
(β k in Finset.Icc 1 n, (1 : β) / k) β€ β k in Finset.Icc 1 n, (a k : β) / k ^ 2 := by
sorry
theorem amc12a_2017_p7 (f : β β β) (hβ : f 1 = 2) (hβ : β n, 1 < n β§ Even n β f n = f (n - 1) + 1)
(hβ : β n, 1 < n β§ Odd n β f n = f (n - 2) + 2) : f 2017 = 2018 := by
sorry
theorem mathd_numbertheory_42 (S : Set β) (u v : β) (hβ : β a : β, a β S β 0 < a β§ 27 * a % 40 = 17)
(hβ : IsLeast S u) (hβ : IsLeast (S \ {u}) v) : u + v = 62 := by
sorry
theorem mathd_algebra_110 (q e : β) (hβ : q = 2 - 2 * Complex.I) (hβ : e = 5 + 5 * Complex.I) :
q * e = 20 := by
-- aesop?
sorry
theorem amc12b_2021_p21 (S : Finset β)
(hβ : β x : β, x β S β 0 < x β§ x ^ (2 : β) ^ Real.sqrt 2 = Real.sqrt 2 ^ (2 : β) ^ x) :
(β2 β€ β k in S, k) β§ (β k in S, k) < 6 := by
sorry
theorem mathd_algebra_405 (S : Finset β) (hβ : β x, x β S β 0 < x β§ x ^ 2 + 4 * x + 4 < 20) :
S.card = 2 := by
sorry
theorem numbertheory_sumkmulnckeqnmul2pownm1 (n : β) (hβ : 0 < n) :
(β k in Finset.Icc 1 n, k * Nat.choose n k) = n * 2 ^ (n - 1) := by
sorry
theorem mathd_algebra_393 (Ο : Equiv β β) (hβ : β x, Ο.1 x = 4 * x ^ 3 + 1) : Ο.2 33 = 2 := by
-- aesop?
simp_all only [Equiv.toFun_as_coe, Equiv.invFun_as_coe]
rw [Ο.symm_apply_eq]
simp_all only
norm_cast
theorem amc12b_2004_p3 (x y : β) (hβ : 2 ^ x * 3 ^ y = 1296) : x + y = 8 := by
sorry
theorem mathd_numbertheory_303 (S : Finset β)
(hβ : β n : β, n β S β 2 β€ n β§ 171 β‘ 80 [MOD n] β§ 468 β‘ 13 [MOD n]) : (β k in S, k) = 111 := by
sorry
theorem mathd_algebra_151 : Int.ceil (Real.sqrt 27) - Int.floor (Real.sqrt 26) = 1 := by
sorry
theorem amc12a_2011_p18 (x y : β) (hβ : abs (x + y) + abs (x - y) = 2) :
x ^ 2 - 6 * x + y ^ 2 β€ 8 := by
sorry
theorem mathd_algebra_15 (s : β β β β β)
(hβ : β a b, 0 < a β§ 0 < b β s a b = a ^ (b : β) + b ^ (a : β)) : s 2 6 = 100 := by
-- aesop?
simp_all only [and_imp, zero_lt_two, zero_lt_succ]
apply Eq.refl
theorem mathd_numbertheory_211 :
Finset.card (Finset.filter (fun n => 6 β£ 4 * βn - (2 : β€)) (Finset.range 60)) = 20 := by
-- aesop?
apply Eq.refl
theorem mathd_numbertheory_640 : (91145 + 91146 + 91147 + 91148) % 4 = 2 := by
-- aesop?
apply Eq.refl
theorem amc12b_2003_p6 (a r : β) (u : β β β) (hβ : β k, u k = a * r ^ k) (hβ : u 1 = 2)
(hβ : u 3 = 6) : u 0 = 2 / Real.sqrt 3 β¨ u 0 = -(2 / Real.sqrt 3) := by
sorry
theorem algebra_2rootsintpoly_am10tap11eqasqpam110 (a : β) :
(a - 10) * (a + 11) = a ^ 2 + a - 110 := by
-- aesop?
ring
theorem aime_1991_p1 (x y : β) (hβ : 0 < x β§ 0 < y) (hβ : x * y + (x + y) = 71)
(hβ : x ^ 2 * y + x * y ^ 2 = 880) : x ^ 2 + y ^ 2 = 146 := by
sorry -- by simp stucks
theorem mathd_algebra_43 (a b : β) (f : β β β) (hβ : β x, f x = a * x + b) (hβ : f 7 = 4)
(hβ : f 6 = 3) : f 3 = 0 := by
-- aesop?
simp_all only
linarith
theorem imo_1988_p6 (a b : β) (hβ : 0 < a β§ 0 < b) (hβ : a * b + 1 β£ a ^ 2 + b ^ 2) :
β x : β, (x ^ 2 : β) = (a ^ 2 + b ^ 2) / (a * b + 1) := by
sorry
theorem aime_1996_p5 (a b c r s t : β) (f g : β β β)
(hβ : β x, f x = x ^ 3 + 3 * x ^ 2 + 4 * x - 11) (hβ : β x, g x = x ^ 3 + r * x ^ 2 + s * x + t)
(hβ : f a = 0) (hβ : f b = 0) (hβ : f c = 0) (hβ
: g (a + b) = 0) (hβ : g (b + c) = 0)
(hβ : g (c + a) = 0) (hβ : List.Pairwise (Β· β Β·) [a, b, c]) : t = 23 := by
sorry
theorem mathd_algebra_55 (q p : β) (hβ : q = 2 - 4 + 6 - 8 + 10 - 12 + 14)
(hβ : p = 3 - 6 + 9 - 12 + 15 - 18 + 21) : q / p = 2 / 3 := by
-- aesop?
aesop_subst [hβ, hβ]
norm_num
theorem algebra_sqineq_2at2pclta2c2p41pc (a c : β) :
2 * a * (2 + c) β€ a ^ 2 + c ^ 2 + 4 * (1 + c) := by
sorry
theorem mathd_numbertheory_43 : IsGreatest { n : β | 15 ^ n β£ 942! } 233 := by
sorry
theorem mathd_algebra_214 (a : β) (f : β β β) (hβ : β x, f x = a * (x - 2) ^ 2 + 3) (hβ : f 4 = 4) :
f 6 = 7 := by
-- aesop?
simp_all only [rpow_two]
linarith
theorem mathd_algebra_96 (x y z a : β) (hβ : 0 < x β§ 0 < y β§ 0 < z)
(hβ : Real.log x - Real.log y = a) (hβ : Real.log y - Real.log z = 15)
(hβ : Real.log z - Real.log x = -7) : a = -8 := by
-- aesop?
aesop_subst hβ
unhygienic with_reducible aesop_destruct_products
linarith
theorem amc12_2001_p2 (a b n : β) (hβ : 1 β€ a β§ a β€ 9) (hβ : 0 β€ b β§ b β€ 9) (hβ : n = 10 * a + b)
(hβ : n = a * b + a + b) : b = 9 := by
rw [hβ] at hβ
simp at hβ
have hβ : 10 * a = (b + 1) * a := by linarith
simp at hβ
cases' hβ with hβ
hβ
linarith
exfalso
simp_all [le_refl]
theorem mathd_algebra_185 (s : Finset β€) (f : β€ β β€) (hβ : β x, f x = abs (x + 4))
(hβ : β x, x β s β f x < 9) : s.card = 17 := by
sorry
theorem algebra_binomnegdiscrineq_10alt28asqp1 (a : β) : 10 * a β€ 28 * a ^ 2 + 1 := by
sorry
theorem mathd_numbertheory_284 (a b : β) (hβ : 1 β€ a β§ a β€ 9 β§ b β€ 9)
(hβ : 10 * a + b = 2 * (a + b)) : 10 * a + b = 18 := by
sorry
theorem amc12a_2009_p2 : 1 + 1 / (1 + 1 / (1 + 1)) = (5 : β) / 3 := by
-- aesop?
simp_all only [one_div]
norm_num
theorem mathd_numbertheory_709 (n : β) (hβ : 0 < n) (hβ : Finset.card (Nat.divisors (2 * n)) = 28)
(hβ : Finset.card (Nat.divisors (3 * n)) = 30) : Finset.card (Nat.divisors (6 * n)) = 35 := by
sorry
theorem amc12a_2013_p8 (x y : β) (hβ : x β 0) (hβ : y β 0) (hβ : x β y)
(hβ : x + 2 / x = y + 2 / y) : x * y = 2 := by
sorry
theorem mathd_numbertheory_461 (n : β)
(hβ : n = Finset.card (Finset.filter (fun x => Nat.gcd x 8 = 1) (Finset.Icc 1 7))) :
3 ^ n % 8 = 1 := by
-- aesop?
aesop_subst hβ
apply Eq.refl
theorem mathd_algebra_59 (b : β) (hβ : (4 : β) ^ b + 2 ^ 3 = 12) : b = 1 := by
sorry
theorem mathd_algebra_234 (d : β) (hβ : 27 / 125 * d = 9 / 25) : 3 / 5 * d ^ 3 = 25 / 9 := by
sorry
-- Solution encoded in the theorem statement.
-- The conclusion is too weak.
theorem imo_1973_p3 (a b : β) (hβ : β x, x ^ 4 + a * x ^ 3 + b * x ^ 2 + a * x + 1 = 0) :
4 / 5 β€ a ^ 2 + b ^ 2 := by
sorry
theorem amc12b_2020_p5 (a b : β) (hβ : (5 : β) / 8 * b = 2 / 3 * a + 7)
(hβ : (b : β) - 5 / 8 * b = a - 2 / 3 * a + 7) : a = 42 := by
sorry
theorem numbertheory_sqmod3in01d (a : β€) : a ^ 2 % 3 = 0 β¨ a ^ 2 % 3 = 1 := by
sorry
theorem mathd_algebra_131 (a b : β) (f : β β β) (hβ : β x, f x = 2 * x ^ 2 - 7 * x + 2)
(hβ : f a = 0) (hβ : f b = 0) (hβ : a β b) : 1 / (a - 1) + 1 / (b - 1) = -1 := by
sorry
theorem amc12b_2003_p17 (x y : β) (hβ : 0 < x β§ 0 < y) (hβ : Real.log (x * y ^ 3) = 1)
(hβ : Real.log (x ^ 2 * y) = 1) : Real.log (x * y) = 3 / 5 := by
sorry
theorem mathd_algebra_536 : β3! * ((2 : β) ^ 3 + Real.sqrt 9) / 2 = (33 : β) := by
sorry
theorem mathd_algebra_22 : Real.logb (5 ^ 2) (5 ^ 4) = 2 := by
sorry
theorem numbertheory_xsqpysqintdenomeq (x y : β) (hβ : (x ^ 2 + y ^ 2).den = 1) : x.den = y.den := by
sorry
theorem aimeII_2001_p3 (x : β β β€) (hβ : x 1 = 211) (hβ : x 2 = 375) (hβ : x 3 = 420)
(hβ : x 4 = 523) (hβ : β n β₯ 5, x n = x (n - 1) - x (n - 2) + x (n - 3) - x (n - 4)) :
x 531 + x 753 + x 975 = 898 := by
sorry
theorem mathd_numbertheory_22 (b : β) (hβ : b < 10)
(hβ : Nat.sqrt (10 * b + 6) * Nat.sqrt (10 * b + 6) = 10 * b + 6) : b = 3 β¨ b = 1 := by
sorry
theorem aime_1987_p8 :
IsGreatest { n : β | 0 < n β§ β! k : β, (8 : β) / 15 < n / (n + k) β§ (n : β) / (n + k) < 7 / 13 } 112 := by
sorry
theorem mathd_numbertheory_136 (n : β) (hβ : 123 * n + 17 = 39500) : n = 321 := by
-- aesop?
simp_all only [succ.injEq]
linarith
theorem amc12_2000_p11 (a b : β) (hβ : a β 0 β§ b β 0) (hβ : a * b = a - b) :
a / b + b / a - a * b = 2 := by
field_simp [hβ.1, hβ.2]
simp only [hβ, mul_comm, mul_sub]
ring
theorem amc12b_2003_p9 (a b : β) (f : β β β) (hβ : β x, f x = a * x + b) (hβ : f 6 - f 2 = 12) :
f 12 - f 2 = 30 := by
-- aesop?
simp_all only [add_sub_add_right_eq_sub]
linarith
theorem algebra_2complexrootspoly_xsqp49eqxp7itxpn7i (x : β) :
x ^ 2 + 49 = (x + 7 * Complex.I) * (x + -7 * Complex.I) := by
-- aesop?
simp_all only [Complex.cpow_two, neg_mul]
ring
simp_all only [Complex.I_sq, neg_mul, one_mul, sub_neg_eq_add]
ring
theorem mathd_numbertheory_198 : 5 ^ 2005 % 100 = 25 := by
-- aesop?
apply Eq.refl
theorem mathd_algebra_149 (f : β β β) (hβ : β x < -5, f x = x ^ 2 + 5)
(hβ : β x β₯ -5, f x = 3 * x - 8) (hβ : Fintype (f β»ΒΉ' {10})) :
(β k in (f β»ΒΉ' {10}).toFinset, k) = 6 := by
sorry
theorem mathd_algebra_132 (x : β) (f g : β β β) (hβ : β x, f x = x + 2) (hβ : β x, g x = x ^ 2)
(hβ : f (g x) = g (f x)) : x = -1 / 2 := by
-- aesop?
simp_all only [rpow_two]
linarith
theorem mathd_numbertheory_37 : Nat.lcm 9999 100001 = 90900909 := by
-- aesop?
apply Eq.refl
theorem aime_1983_p9 (x : β) (hβ : 0 < x β§ x < Real.pi) :
12 β€ (9 * (x ^ 2 * Real.sin x ^ 2) + 4) / (x * Real.sin x) := by
sorry
theorem mathd_algebra_37 (x y : β) (hβ : x + y = 7) (hβ : 3 * x + y = 45) : x ^ 2 - y ^ 2 = 217 := by
sorry
theorem mathd_numbertheory_458 (n : β) (hβ : n % 8 = 7) : n % 4 = 3 := by
sorry
theorem amc12a_2008_p15 (k : β) (hβ : k = 2008 ^ 2 + 2 ^ 2008) : (k ^ 2 + 2 ^ k) % 10 = 6 := by
sorry
theorem mathd_numbertheory_301 (j : β) (hβ : 0 < j) : 3 * (7 * βj + 3) % 7 = 2 := by
calc
3 * (7 * βj + 3) % 7 = (3 * 3 + 3 * βj * 7) % 7 := by ring_nf
_ = 3 * 3 % 7 := by apply Nat.add_mul_mod_self_right
_ = 2 := by norm_num
theorem amc12a_2009_p15 (n : β) (hβ : 0 < n)
(hβ : (β k in Finset.Icc 1 n, βk * Complex.I ^ k) = 48 + 49 * Complex.I) : n = 97 := by
sorry
theorem algebra_sqineq_36azm9asqle36zsq (z a : β) : 36 * (a * z) - 9 * a ^ 2 β€ 36 * z ^ 2 := by
sorry
theorem amc12a_2013_p7 (s : β β β) (hβ : β n, s (n + 2) = s (n + 1) + s n) (hβ : s 9 = 110)
(hβ : s 7 = 42) : s 4 = 10 := by
-- aesop?
simp_all only [zero_add]
linarith
theorem mathd_algebra_104 (x : β) (hβ : 125 / 8 = x / 12) : x = 375 / 2 := by
-- aesop?
linarith
theorem mathd_numbertheory_252 : 7! % 23 = 3 := by
-- aesop?
apply Eq.refl
theorem amc12a_2020_p21 (S : Finset β)
(hβ : β n : β, n β S β 5 β£ n β§ Nat.lcm 5! n = 5 * Nat.gcd 10! n) : S.card = 48 := by
sorry
theorem mathd_algebra_493 (f : β β β) (hβ : β x, f x = x ^ 2 - 4 * Real.sqrt x + 1) :
f (f 4) = 70 := by
sorry
theorem numbertheory_nckeqnm1ckpnm1ckm1 (n k : β) (hβ : 0 < n β§ 0 < k) (hβ : k β€ n) :
Nat.choose n k = Nat.choose (n - 1) k + Nat.choose (n - 1) (k - 1) := by
sorry
theorem algebra_3rootspoly_amdtamctambeqnasqmbpctapcbtdpasqmbpctapcbta (b c d a : β) :
(a - d) * (a - c) * (a - b) =
-((a ^ 2 - (b + c) * a + c * b) * d) + (a ^ 2 - (b + c) * a + c * b) * a := by
-- TODO: `aesop` stucks here but `suggest_tactics` works
ring
theorem mathd_numbertheory_403 : (β k in Nat.properDivisors 198, k) = 270 := by
-- aesop?
apply Eq.refl
theorem mathd_algebra_190 : ((3 : β) / 8 + 7 / 8) / (4 / 5) = 25 / 16 := by
-- aesop?
norm_num
theorem mathd_numbertheory_269 : (2005 ^ 2 + 2005 ^ 0 + 2005 ^ 0 + 2005 ^ 5) % 100 = 52 := by
-- aesop?
simp_all only [_root_.pow_zero]
apply Eq.refl
theorem aime_1990_p2 :
(52 + 6 * Real.sqrt 43) ^ ((3 : β) / 2) - (52 - 6 * Real.sqrt 43) ^ ((3 : β) / 2) = 828 := by
sorry -- aesop stucks
theorem mathd_numbertheory_101 : 17 * 18 % 4 = 2 := by
-- aesop?
apply Eq.refl
theorem algebra_sqineq_4bap1lt4bsqpap1sq (a b : β) : 4 * b * (a + 1) β€ 4 * b ^ 2 + (a + 1) ^ 2 := by
sorry
theorem mathd_numbertheory_156 (n : β) (hβ : 0 < n) : Nat.gcd (n + 7) (2 * n + 1) β€ 13 := by
sorry
theorem mathd_algebra_451 (Ο : Equiv β β) (hβ : Ο.2 (-15) = 0) (hβ : Ο.2 0 = 3) (hβ : Ο.2 3 = 9)
(hβ : Ο.2 9 = 20) : Ο.1 (Ο.1 9) = 0 := by
simp only [Equiv.invFun_as_coe, eq_comm] at hβ hβ hβ hβ
simp only [Equiv.toFun_as_coe]
rw [β Equiv.apply_eq_iff_eq_symm_apply Ο] at hβ
rw [β Equiv.apply_eq_iff_eq_symm_apply Ο] at hβ
have hβ := (Equiv.apply_eq_iff_eq Ο).mpr hβ
rw [hβ] at hβ
exact hβ
theorem mathd_algebra_144 (a b c d : β) (hβ : 0 < a β§ 0 < b β§ 0 < c β§ 0 < d) (hβ : (c : β€) - b = d)
(hβ : (b : β€) - a = d) (hβ : a + b + c = 60) (hβ : a + b > c) : d < 10 := by
-- aesop?
rename_i hβ_1
simp_all only [gt_iff_lt]
unhygienic with_reducible aesop_destruct_products
linarith
theorem mathd_algebra_282 (f : β β β) (hβ : β x : β, Β¬ (Irrational x) β f x = abs (Int.floor x))
(hβ : β x, Irrational x β f x = (Int.ceil x) ^ 2) :
f (8 ^ (1 / 3)) + f (-Real.pi) + f (Real.sqrt 50) + f (9 / 2) = 79 := by
sorry
theorem mathd_algebra_410 (x y : β) (hβ : y = x ^ 2 - 6 * x + 13) : 4 β€ y := by
sorry
theorem mathd_numbertheory_232 (x y z : ZMod 31) (hβ : x = 3β»ΒΉ) (hβ : y = 5β»ΒΉ)
(hβ : z = (x + y)β»ΒΉ) : z = 29 := by
-- aesop?
aesop_subst [hβ, hβ, hβ]
apply Eq.refl
theorem mathd_algebra_77 (a b : β) (f : β β β) (hβ : a β 0 β§ b β 0) (hβ : a β b)
(hβ : β x, f x = x ^ 2 + a * x + b) (hβ : f a = 0) (hβ : f b = 0) : a = 1 β§ b = -2 := by
sorry
-- Solution encoded in the theorem statement.
-- The conclusion is too weak. It doesn't show s can be any number in [1, 2]
theorem imo_1974_p5 (a b c d s : β) (hβ : 0 < a β§ 0 < b β§ 0 < c β§ 0 < d)
(hβ : s = a / (a + b + d) + b / (a + b + c) + c / (b + c + d) + d / (a + c + d)) :
1 < s β§ s < 2 := by
sorry
theorem aime_1988_p3 (x : β) (hβ : 0 < x)
(hβ : Real.logb 2 (Real.logb 8 x) = Real.logb 8 (Real.logb 2 x)) : Real.logb 2 x ^ 2 = 27 := by
sorry
theorem mathd_numbertheory_530 (n k : β) (hβ : 0 < n β§ 0 < k) (hβ : (n : β) / k < 6)
(hβ : (5 : β) < n / k) : 22 β€ Nat.lcm n k / Nat.gcd n k := by
sorry
theorem mathd_algebra_109 (a b : β) (hβ : 3 * a + 2 * b = 12) (hβ : a = 4) : b = 0 := by
-- aesop?
aesop_subst hβ
linarith
theorem imo_1967_p3 (k m n : β) (c : β β β) (hβ : 0 < k β§ 0 < m β§ 0 < n)
(hβ : β s, c s = s * (s + 1)) (hβ : Nat.Prime (k + m + 1)) (hβ : n + 1 < k + m + 1) :
(β i in Finset.Icc 1 n, c i) β£ β i in Finset.Icc 1 n, c (m + i) - c k := by
sorry
theorem mathd_algebra_11 (a b : β) (hβ : a β b) (hβ : a β 2 * b)
(hβ : (4 * a + 3 * b) / (a - 2 * b) = 5) : (a + 11 * b) / (a - b) = 2 := by
sorry
theorem amc12a_2003_p1 (u v : β β β) (hβ : β n, u n = 2 * n + 2) (hβ : β n, v n = 2 * n + 1) :
((β k in Finset.range 2003, u k) - β k in Finset.range 2003, v k) = 2003 := by
-- aesop?
simp_all only [ge_iff_le]
rfl
theorem numbertheory_aneqprodakp4_anmsqrtanp1eq2 (a : β β β) (hβ : a 0 = 1)
(hβ : β n, a (n + 1) = (β k in Finset.range (n + 1), a k) + 4) :
β n β₯ 1, a n - Real.sqrt (a (n + 1)) = 2 := by
sorry
theorem algebra_2rootspoly_apatapbeq2asqp2ab (a b : β) :
(a + a) * (a + b) = 2 * a ^ 2 + 2 * (a * b) := by
-- aesop?
ring
theorem induction_sum_odd (n : β) : (β k in Finset.range n, 2 * k) + 1 = n ^ 2 := by
sorry
theorem mathd_algebra_568 (a : β) :
(a - 1) * (a + 1) * (a + 2) - (a - 2) * (a + 1) = a ^ 3 + a ^ 2 := by
-- aesop?
ring
theorem mathd_algebra_616 (f g : β β β) (hβ : β x, f x = x ^ 3 + 2 * x + 1)
(hβ : β x, g x = x - 1) : f (g 1) = 1 := by
-- aesop?
simp_all
theorem mathd_numbertheory_690 :
IsLeast { a : β | 0 < a β§ a β‘ 2 [MOD 3] β§ a β‘ 4 [MOD 5] β§ a β‘ 6 [MOD 7] β§ a β‘ 8 [MOD 9] } 314 := by
sorry
theorem amc12a_2016_p2 (x : β) (hβ : (10 : β) ^ x * 100 ^ (2 * x) = 1000 ^ 5) : x = 3 := by
sorry
theorem mathd_numbertheory_405 (a b c : β) (t : β β β) (hβ : t 0 = 0) (hβ : t 1 = 1)
(hβ : β n > 1, t n = t (n - 2) + t (n - 1)) (hβ : a β‘ 5 [MOD 16]) (hβ : b β‘ 10 [MOD 16])
(hβ
: c β‘ 15 [MOD 16]) : (t a + t b + t c) % 7 = 5 := by
sorry
theorem mathd_numbertheory_110 (a b : β) (hβ : 0 < a β§ 0 < b β§ b β€ a) (hβ : (a + b) % 10 = 2)
(hβ : (2 * a + b) % 10 = 1) : (a - b) % 10 = 6 := by
sorry
theorem amc12a_2003_p25 (a b : β) (f : β β β) (hβ : 0 < b)
(hβ : β x, f x = Real.sqrt (a * x ^ 2 + b * x)) (hβ : { x | 0 β€ f x } = f '' { x | 0 β€ f x }) :
a = 0 β¨ a = -4 := by
sorry
theorem amc12a_2010_p10 (p q : β) (a : β β β) (hβ : β n, a (n + 2) - a (n + 1) = a (n + 1) - a n)
(hβ : a 1 = p) (hβ : a 2 = 9) (hβ : a 3 = 3 * p - q) (hβ : a 4 = 3 * p + q) : a 2010 = 8041 := by
sorry
theorem mathd_algebra_509 :
Real.sqrt ((5 / Real.sqrt 80 + Real.sqrt 845 / 9 + Real.sqrt 45) / Real.sqrt 5) = 13 / 6 := by
sorry
theorem mathd_algebra_159 (b : β) (f : β β β)
(hβ : β x, f x = 3 * x ^ 4 - 7 * x ^ 3 + 2 * x ^ 2 - b * x + 1) (hβ : f 1 = 1) : b = -2 := by
-- aesop?
simp_all only [rpow_two, one_rpow, mul_one, one_pow, add_left_eq_self]
linarith
theorem aime_1997_p11 (x : β)
(hβ :
x =
(β n in Finset.Icc (1 : β) 44, Real.cos (n * Ο / 180)) /
β n in Finset.Icc (1 : β) 44, Real.sin (n * Ο / 180)) :
Int.floor (100 * x) = 241 := by
sorry
theorem aimeI_2000_p7 (x y z : β) (m : β) (hβ : 0 < x β§ 0 < y β§ 0 < z) (hβ : x * y * z = 1)
(hβ : x + 1 / z = 5) (hβ : y + 1 / x = 29) (hβ : z + 1 / y = m) (hβ
: 0 < m) :
βm.den + m.num = 5 := by
sorry
theorem aime_1988_p4 (n : β) (a : β β β) (hβ : β n, abs (a n) < 1)
(hβ : (β k in Finset.range n, abs (a k)) = 19 + abs (β k in Finset.range n, a k)) : 20 β€ n := by
sorry
theorem induction_divisibility_9div10tonm1 (n : β) (hβ : 0 < n) : 9 β£ 10 ^ n - 1 := by
sorry
theorem mathd_numbertheory_126 (x a : β) (hβ : 0 < x β§ 0 < a) (hβ : Nat.gcd a 40 = x + 3)
(hβ : Nat.lcm a 40 = x * (x + 3))
(hβ : β b : β, 0 < b β Nat.gcd b 40 = x + 3 β§ Nat.lcm b 40 = x * (x + 3) β a β€ b) : a = 8 := by
sorry
theorem mathd_algebra_323 (Ο : Equiv β β) (h : β x, Ο.1 x = x ^ 3 - 8) : Ο.2 (Ο.1 (Ο.2 19)) = 3 := by
sorry
theorem mathd_algebra_421 (a b c d : β) (hβ : b = a ^ 2 + 4 * a + 6)
(hβ : b = 1 / 2 * a ^ 2 + a + 6) (hβ : d = c ^ 2 + 4 * c + 6) (hβ : d = 1 / 2 * c ^ 2 + c + 6)
(hβ : a < c) : c - a = 6 := by
sorry
theorem imo_1987_p6 (p : β) (f : β β β) (hβ : β x, f x = x ^ 2 + x + p)
(hβ : β k : β, k β€ Nat.floor (Real.sqrt (p / 3)) β Nat.Prime (f k)) :
β i β€ p - 2, Nat.Prime (f i) := by
sorry
theorem amc12a_2009_p25 (a : β β β) (hβ : a 1 = 1) (hβ : a 2 = 1 / Real.sqrt 3)
(hβ : β n, 1 β€ n β a (n + 2) = (a n + a (n + 1)) / (1 - a n * a (n + 1))) : abs (a 2009) = 0 := by
sorry
-- Geometry probem that shouldn't be formalized like this.
theorem imo_1961_p1 (x y z a b : β) (hβ : 0 < x β§ 0 < y β§ 0 < z) (hβ : x β y) (hβ : y β z)
(hβ : z β x) (hβ : x + y + z = a) (hβ
: x ^ 2 + y ^ 2 + z ^ 2 = b ^ 2) (hβ : x * y = z ^ 2) :
0 < a β§ b ^ 2 < a ^ 2 β§ a ^ 2 < 3 * b ^ 2 := by
sorry -- aesop stucks
theorem mathd_algebra_31 (x : NNReal) (u : β β NNReal) (hβ : β n, u (n + 1) = NNReal.sqrt (x + u n))
(hβ : Filter.Tendsto u Filter.atTop (π 9)) : 9 = NNReal.sqrt (x + 9) := by
sorry
theorem algebra_manipexpr_apbeq2cceqiacpbceqm2 (a b c : β) (hβ : a + b = 2 * c)
(hβ : c = Complex.I) : a * c + b * c = -2 := by
rw [β add_mul, hβ, hβ, mul_assoc, Complex.I_mul_I]
ring
theorem mathd_numbertheory_370 (n : β) (hβ : n % 7 = 3) : (2 * n + 1) % 7 = 0 := by
sorry
theorem mathd_algebra_437 (x y : β) (n : β€) (hβ : x ^ 3 = -45) (hβ : y ^ 3 = -101) (hβ : x < n)
(hβ : βn < y) : n = -4 := by
sorry
-- Solution encoded in the theorem statement.
-- Conclusion too weak. It doesn't show "if and only if"
theorem imo_1966_p5 (x a : β β β) (hβ : a 1 β a 2) (hβ : a 1 β a 3) (hβ : a 1 β a 4)
(hβ : a 2 β a 3) (hβ : a 2 β a 4) (hβ
: a 3 β a 4) (hβ : a 1 > a 2) (hβ : a 2 > a 3)
(hβ : a 3 > a 4)
(hβ : abs (a 1 - a 2) * x 2 + abs (a 1 - a 3) * x 3 + abs (a 1 - a 4) * x 4 = 1)
(hββ : abs (a 2 - a 1) * x 1 + abs (a 2 - a 3) * x 3 + abs (a 2 - a 4) * x 4 = 1)
(hββ : abs (a 3 - a 1) * x 1 + abs (a 3 - a 2) * x 2 + abs (a 3 - a 4) * x 4 = 1)
(hββ : abs (a 4 - a 1) * x 1 + abs (a 4 - a 2) * x 2 + abs (a 4 - a 3) * x 3 = 1) :
x 2 = 0 β§ x 3 = 0 β§ x 1 = 1 / abs (a 1 - a 4) β§ x 4 = 1 / abs (a 1 - a 4) := by
sorry
theorem mathd_algebra_89 (b : β) (hβ : b β 0) :
(7 * b ^ 3) ^ 2 * (4 * b ^ 2) ^ (-(3 : β€)) = 49 / 64 := by
sorry
theorem imo_1966_p4 (n : β) (x : β) (hβ : β k : β, 0 < k β β m : β€, x β m * Ο / 2 ^ k)
(hβ : 0 < n) :
(β k in Finset.Icc 1 n, 1 / Real.sin (2 ^ k * x)) = 1 / Real.tan x - 1 / Real.tan (2 ^ n * x) := by
sorry
theorem mathd_algebra_67 (f g : β β β) (hβ : β x, f x = 5 * x + 3) (hβ : β x, g x = x ^ 2 - 2) :
g (f (-1)) = 2 := by
-- aesop?
simp_all only [rpow_two, mul_neg, mul_one]
norm_num
theorem mathd_numbertheory_326 (n : β€) (hβ : (n - 1) * n * (n + 1) = 720 ) : n + 1 = 10 := by
sorry
theorem induction_divisibility_3div2tooddnp1 (n : β) : 3 β£ 2 ^ (2 * n + 1) + 1 := by
sorry
theorem mathd_algebra_123 (a b : β) (hβ : 0 < a β§ 0 < b) (hβ : a + b = 20) (hβ : a = 3 * b) :
a - b = 10 := by
sorry
theorem algebra_2varlineareq_xpeeq7_2xpeeq3_eeq11_xeqn4 (x e : β) (hβ : x + e = 7)
(hβ : 2 * x + e = 3) : e = 11 β§ x = -4 := by
sorry
theorem imo_1993_p5 : β f : β β β, f 1 = 2 β§ β n, f (f n) = f n + n β§ β n, f n < f (n + 1) := by
sorry
theorem numbertheory_prmdvsneqnsqmodpeq0 (n : β€) (p : β) (hβ : Nat.Prime p) :
βp β£ n β n ^ 2 % p = 0 := by
sorry
theorem imo_1964_p1_1 (n : β) (hβ : 7 β£ 2 ^ n - 1) : 3 β£ n := by
sorry
theorem imo_1990_p3 (n : β) (hβ : 2 β€ n) (hβ : n ^ 2 β£ 2 ^ n + 1) : n = 3 := by
sorry
theorem induction_ineq_nsqlefactn (n : β) (hβ : 4 β€ n) : n ^ 2 β€ n ! := by
sorry
theorem mathd_numbertheory_30 :
(33818 ^ 2 + 33819 ^ 2 + 33820 ^ 2 + 33821 ^ 2 + 33822 ^ 2) % 17 = 0 := by
-- aesop?
apply Eq.refl
theorem mathd_algebra_267 (x : β) (hβ : x β 1) (hβ : x β -2)
(hβ : (x + 1) / (x - 1) = (x - 2) / (x + 2)) : x = 0 := by
sorry
theorem mathd_numbertheory_961 : 2003 % 11 = 1 := by
-- aesop?
apply Eq.refl
theorem induction_seq_mul2pnp1 (n : β) (u : β β β) (hβ : u 0 = 0)
(hβ : β n, u (n + 1) = 2 * u n + (n + 1)) : u n = 2 ^ (n + 1) - (n + 2) := by
sorry
theorem amc12a_2002_p12 (f : β β β) (k : β) (a b : β) (hβ : β x, f x = x ^ 2 - 63 * x + k)
(hβ : f a = 0 β§ f b = 0) (hβ : a β b) (hβ : Nat.Prime a β§ Nat.Prime b) : k = 122 := by
sorry
theorem algebra_manipexpr_2erprsqpesqeqnrpnesq (e r : β) :
2 * (e * r) + (e ^ 2 + r ^ 2) = (-r + -e) ^ 2 := by
-- aesop?
ring
theorem mathd_algebra_119 (d e : β) (hβ : 2 * d = 17 * e - 8) (hβ : 2 * e = d - 9) : e = 2 := by
-- aesop?
linarith
theorem amc12a_2020_p13 (a b c : β) (n : NNReal) (hβ : n β 1) (hβ : 1 < a β§ 1 < b β§ 1 < c)
(hβ : (n * (n * n ^ (1 / c)) ^ (1 / b)) ^ (1 / a) = (n ^ 25) ^ (1 / 36)) : b = 3 := by
sorry
-- Solution encoded in the theorem statement.
-- The conclusion is too weak. It doesn't prevent other solutions.
theorem imo_1977_p5 (a b q r : β) (hβ : r < a + b) (hβ : a ^ 2 + b ^ 2 = (a + b) * q + r)
(hβ : q ^ 2 + r = 1977) :
abs ((a : β€) - 22) = 15 β§ abs ((b : β€) - 22) = 28 β¨
abs ((a : β€) - 22) = 28 β§ abs ((b : β€) - 22) = 15 := by
sorry
theorem numbertheory_2dvd4expn (n : β) (hβ : n β 0) : 2 β£ 4 ^ n := by
revert n hβ
rintro β¨k, rflβ©
Β· norm_num
apply dvd_pow
norm_num
theorem amc12a_2010_p11 (x b : β) (hβ : 0 < b) (hβ : (7 : β) ^ (x + 7) = 8 ^ x)
(hβ : x = Real.logb b (7 ^ 7)) : b = 8 / 7 := by
sorry
theorem amc12a_2003_p24 :
IsGreatest { y : β | β a b : β, 1 < b β§ b β€ a β§ y = Real.logb a (a / b) + Real.logb b (b / a) }
0 := by
sorry
theorem amc12a_2002_p1 (f : β β β) (hβ : β x, f x = (2 * x + 3) * (x - 4) + (2 * x + 3) * (x - 6))
(hβ : Fintype (f β»ΒΉ' {0})) : (β y in (f β»ΒΉ' {0}).toFinset, y) = 7 / 2 := by
sorry
theorem mathd_algebra_206 (a b : β) (f : β β β) (hβ : β x, f x = x ^ 2 + a * x + b) (hβ : 2 * a β b)
(hβ : f (2 * a) = 0) (hβ : f b = 0) : a + b = -1 := by
sorry
theorem mathd_numbertheory_92 (n : β) (hβ : 5 * n % 17 = 8) : n % 17 = 5 := by
sorry
theorem mathd_algebra_482 (m n : β) (k : β) (f : β β β) (hβ : Nat.Prime m) (hβ : Nat.Prime n)
(hβ : β x, f x = x ^ 2 - 12 * x + k) (hβ : f m = 0) (hβ : f n = 0) (hβ
: m β n) : k = 35 := by
sorry
theorem amc12b_2002_p3 (S : Finset β)
-- note: we use (n^2 + 2 - 3 * n) over (n^2 - 3 * n + 2) because nat subtraction truncates the latter at 1 and 2
(hβ : β n : β, n β S β 0 < n β§ Nat.Prime (n ^ 2 + 2 - 3 * n)) :
S.card = 1 := by
sorry
theorem mathd_numbertheory_668 (l r : ZMod 7) (hβ : l = (2 + 3)β»ΒΉ) (hβ : r = 2β»ΒΉ + 3β»ΒΉ) :
l - r = 1 := by
-- aesop?
aesop_subst [hβ, hβ]
apply Eq.refl
theorem mathd_algebra_251 (x : β) (hβ : x β 0) (hβ : 3 + 1 / x = 7 / x) : x = 2 := by
-- aesop?
simp_all only [ne_eq, one_div]
field_simp [hβ] at hβ
linarith
theorem mathd_numbertheory_84 : Int.floor ((9 : β) / 160 * 100) = 5 := by
rw [Int.floor_eq_iff]
constructor
all_goals norm_num
theorem mathd_numbertheory_412 (x y : β€) (hβ : x % 19 = 4) (hβ : y % 19 = 7) :
(x + 1) ^ 2 * (y + 5) ^ 3 % 19 = 13 := by
sorry
theorem mathd_algebra_181 (n : β) (hβ : n β 3) (hβ : (n + 5) / (n - 3) = 2) : n = 11 := by
rw [div_eq_iff] at hβ
linarith
exact sub_ne_zero.mpr hβ
/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (y Β«expr β Β» 0) -/
theorem amc12a_2016_p3 (f : β β β β β)
(hβ : β x, β (y) (_ : y β 0), f x y = x - y * Int.floor (x / y)) :
f (3 / 8) (-(2 / 5)) = -(1 / 40) := by
sorry
/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (n Β«expr = Β» 3) -/
theorem mathd_algebra_247 (t s : β) (n : β€) (hβ : t = 2 * s - s ^ 2) (hβ : s = n ^ 2 - 2 ^ n + 1)
(n) (_ : n = 3) : t = 0 := by
sorry
theorem algebra_sqineq_2unitcircatblt1 (a b : β) (hβ : a ^ 2 + b ^ 2 = 2) : a * b β€ 1 := by
sorry
theorem mathd_numbertheory_629 : IsLeast { t : β | 0 < t β§ Nat.lcm 12 t ^ 3 = (12 * t) ^ 2 } 18 :=
by sorry
theorem amc12a_2017_p2 (x y : β) (hβ : x β 0) (hβ : y β 0) (hβ : x + y = 4 * (x * y)) :
1 / x + 1 / y = 4 := by
-- aesop?
simp_all only [ne_eq, one_div]
field_simp
rwa [add_comm]
theorem algebra_amgm_sumasqdivbsqgeqsumbdiva (a b c : β) (hβ : 0 < a β§ 0 < b β§ 0 < c) :
a ^ 2 / b ^ 2 + b ^ 2 / c ^ 2 + c ^ 2 / a ^ 2 β₯ b / a + c / b + a / c := by
sorry
theorem mathd_numbertheory_202 : (19 ^ 19 + 99 ^ 99) % 10 = 8 := by
-- aesop?
apply Eq.refl
theorem imo_1979_p1 (p q : β) (hβ : 0 < q)
(hβ : (β k in Finset.Icc (1 : β) 1319, (-1) ^ (k + 1) * ((1 : β) / k)) = p / q) : 1979 β£ p :=
sorry
theorem mathd_algebra_51 (a b : β) (hβ : 0 < a β§ 0 < b) (hβ : a + b = 35) (hβ : a = 2 / 5 * b) :
b - a = 15 := by
-- aesop?
aesop_subst hβ
unhygienic with_reducible aesop_destruct_products
simp_all only [gt_iff_lt, mul_pos_iff_of_pos_right]
linarith
theorem mathd_algebra_10 : abs ((120 : β) / 100 * 30 - 130 / 100 * 20) = 10 := by
-- aesop?
norm_num
|