|
--- |
|
license: mit |
|
base_model: xlm-roberta-base |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: xlm-roberta-base-fire-classification-silvanus |
|
results: [] |
|
widget: |
|
- text: >- |
|
Kebakaran hutan dan lahan terus terjadi dan semakin meluas di Kota |
|
Palangkaraya, Kalimantan Tengah (Kalteng) pada hari Rabu, 15 Nopember 2023 |
|
20.00 WIB. Bahkan kobaran api mulai membakar pondok warga dan mendekati |
|
permukiman. BZK #RCTINews #SeputariNews #News #Karhutla #KebakaranHutan |
|
#HutanKalimantan #SILVANUS_Italian_Pilot_Testing |
|
example_title: Indonesia |
|
- text: >- |
|
Wildfire rages for a second day in Evia destroying a Natura 2000 protected |
|
pine forest. - 5:51 PM Aug 14, 2019 |
|
example_title: English |
|
- text: >- |
|
3 nov 2023 21:57 - Incendio forestal obliga a la evacuación de hasta 850 |
|
personas cerca del pueblo de Montichelvo en Valencia. |
|
example_title: Spanish |
|
- text: >- |
|
Incendi boschivi nell'est del Paese: 2 morti e oltre 50 case distrutte nello |
|
stato del Queensland. |
|
example_title: Italian |
|
- text: >- |
|
Lesné požiare na Sicílii si vyžiadali dva ľudské životy a evakuáciu hotela |
|
http://dlvr.it/SwW3sC - 23. septembra 2023 20:57 |
|
example_title: Slovak |
|
language: |
|
- id |
|
- en |
|
- es |
|
- it |
|
- sk |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlm-roberta-base-fire-classification-silvanus |
|
|
|
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the Twitter (X) dataset based on the "forest fire" keyword. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5255 |
|
- Accuracy: 0.8884 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 1.0 | 233 | 0.5431 | 0.8670 | |
|
| No log | 2.0 | 466 | 0.5125 | 0.8670 | |
|
| 0.4162 | 3.0 | 699 | 0.5255 | 0.8884 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |