rohn132's picture
Model card auto-generated by SimpleTuner
5524ab0 verified
metadata
license: other
base_model: black-forest-labs/FLUX.1-dev
tags:
  - flux
  - flux-diffusers
  - text-to-image
  - diffusers
  - simpletuner
  - lora
  - template:sd-lora
inference: true
widget:
  - text: unconditional (blank prompt)
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_0_0.png
  - text: transparent objects on a table in low light
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_1_0.png
  - text: transparent objects on a table in bright light
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_2_0.png
  - text: transparent objects on a table in the backyard
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_3_0.png
  - text: partially filled transaprent objects on a table
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_4_0.png
  - text: transparent objects among opaque objects on a table
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_5_0.png
  - text: transparent syringes on a table
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_6_0.png
  - text: transparent objects in a container
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_7_0.png
  - text: transparent objects on a table
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_8_0.png

simpletuner-lora-flux-v2

This is a standard PEFT LoRA derived from black-forest-labs/FLUX.1-dev.

The main validation prompt used during training was:

transparent objects on a table

Validation settings

  • CFG: 3.0
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: None
  • Seed: 42
  • Resolution: 1024x1024

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
transparent objects on a table in low light
Negative Prompt
blurry, cropped, ugly
Prompt
transparent objects on a table in bright light
Negative Prompt
blurry, cropped, ugly
Prompt
transparent objects on a table in the backyard
Negative Prompt
blurry, cropped, ugly
Prompt
partially filled transaprent objects on a table
Negative Prompt
blurry, cropped, ugly
Prompt
transparent objects among opaque objects on a table
Negative Prompt
blurry, cropped, ugly
Prompt
transparent syringes on a table
Negative Prompt
blurry, cropped, ugly
Prompt
transparent objects in a container
Negative Prompt
blurry, cropped, ugly
Prompt
transparent objects on a table
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 1
  • Training steps: 60000
  • Learning rate: 8e-05
  • Effective batch size: 4
    • Micro-batch size: 1
    • Gradient accumulation steps: 4
    • Number of GPUs: 1
  • Prediction type: flow-matching
  • Rescaled betas zero SNR: False
  • Optimizer: adamw_bf16
  • Precision: bf16
  • Quantised: No
  • Xformers: Not used
  • LoRA Rank: 64
  • LoRA Alpha: None
  • LoRA Dropout: 0.1
  • LoRA initialisation style: default

Datasets

transparent_objects_custom

  • Repeats: 0
  • Total number of images: 160826
  • Total number of aspect buckets: 1
  • Resolution: 0.262144 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'rohn132/simpletuner-lora-flux-v2'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)

prompt = "transparent objects on a table"

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1024,
    height=1024,
    guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")