t5-abs-2309-1054-lr-1e-05-bs-5-maxep-20

This model is a fine-tuned version of google-t5/t5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 4.0908
  • Rouge/rouge1: 0.4752
  • Rouge/rouge2: 0.2304
  • Rouge/rougel: 0.4054
  • Rouge/rougelsum: 0.4058
  • Bertscore/bertscore-precision: 0.8974
  • Bertscore/bertscore-recall: 0.8993
  • Bertscore/bertscore-f1: 0.8982
  • Meteor: 0.4445
  • Gen Len: 41.7091

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 10
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge/rouge1 Rouge/rouge2 Rouge/rougel Rouge/rougelsum Bertscore/bertscore-precision Bertscore/bertscore-recall Bertscore/bertscore-f1 Meteor Gen Len
0.0043 1.0 87 3.9670 0.4794 0.2341 0.4098 0.4105 0.8988 0.9001 0.8993 0.4454 41.3091
0.0021 2.0 174 3.9846 0.482 0.2397 0.4136 0.4144 0.8988 0.8999 0.8993 0.4495 41.2182
0.0026 3.0 261 4.0097 0.4788 0.2365 0.4095 0.4104 0.8982 0.8995 0.8987 0.4461 41.3273
0.0028 4.0 348 4.0332 0.4773 0.2371 0.4078 0.4086 0.8974 0.8989 0.898 0.4476 41.6909
0.0027 5.0 435 4.0492 0.4799 0.2368 0.4087 0.4095 0.8981 0.8997 0.8988 0.4493 41.6818
0.0023 6.0 522 4.0660 0.4766 0.2319 0.405 0.4055 0.8971 0.899 0.8979 0.4466 41.8273
0.0023 7.0 609 4.0819 0.4777 0.2334 0.4066 0.407 0.8978 0.8988 0.8982 0.4457 41.5273
0.0023 8.0 696 4.0912 0.4799 0.2336 0.4085 0.4092 0.8979 0.8994 0.8985 0.4496 41.6364
0.0021 9.0 783 4.1035 0.4774 0.2328 0.4067 0.4075 0.8979 0.899 0.8983 0.4456 41.5909
0.0025 10.0 870 4.1177 0.4769 0.2321 0.4058 0.4064 0.898 0.8989 0.8983 0.4438 41.1727
0.0124 11.0 957 4.1056 0.4773 0.2327 0.4065 0.4069 0.8974 0.8992 0.8982 0.4466 41.7545
0.0119 12.0 1044 4.1007 0.4737 0.2291 0.4029 0.4036 0.8968 0.8992 0.8979 0.4442 41.9727
0.0119 13.0 1131 4.0992 0.4737 0.2303 0.4035 0.4037 0.8968 0.8987 0.8976 0.4416 41.6455
0.0117 14.0 1218 4.0943 0.4763 0.2302 0.4058 0.4058 0.8973 0.8989 0.898 0.4433 41.6273
0.0102 15.0 1305 4.0950 0.4744 0.2296 0.4041 0.4047 0.8971 0.899 0.8979 0.4434 41.7727
0.0105 16.0 1392 4.0931 0.474 0.2286 0.4033 0.4039 0.8972 0.8991 0.898 0.4431 41.7818
0.0096 17.0 1479 4.0920 0.4743 0.2298 0.4049 0.4052 0.8973 0.8992 0.8981 0.4431 41.6909
0.01 18.0 1566 4.0910 0.4756 0.23 0.4055 0.4055 0.8972 0.899 0.898 0.4439 41.6818
0.0105 19.0 1653 4.0911 0.4752 0.2306 0.4057 0.406 0.8974 0.8993 0.8982 0.4444 41.6727
0.0094 20.0 1740 4.0908 0.4752 0.2304 0.4054 0.4058 0.8974 0.8993 0.8982 0.4445 41.7091

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
223M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for roequitz/t5-abs-2309-1054-lr-1e-05-bs-5-maxep-20

Base model

google-t5/t5-base
Finetuned
(435)
this model