t5-abs-2309-1054-lr-0.0001-bs-2-maxep-20

This model is a fine-tuned version of google-t5/t5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 4.1236
  • Rouge/rouge1: 0.4731
  • Rouge/rouge2: 0.2208
  • Rouge/rougel: 0.3994
  • Rouge/rougelsum: 0.4008
  • Bertscore/bertscore-precision: 0.8972
  • Bertscore/bertscore-recall: 0.897
  • Bertscore/bertscore-f1: 0.897
  • Meteor: 0.4314
  • Gen Len: 40.8273

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge/rouge1 Rouge/rouge2 Rouge/rougel Rouge/rougelsum Bertscore/bertscore-precision Bertscore/bertscore-recall Bertscore/bertscore-f1 Meteor Gen Len
0.049 1.0 217 3.0726 0.4642 0.2147 0.395 0.3945 0.8959 0.897 0.8963 0.4246 41.0364
0.025 2.0 434 3.5278 0.4809 0.2331 0.4126 0.4135 0.8997 0.9002 0.8998 0.44 40.2545
0.0177 3.0 651 3.7709 0.4672 0.2131 0.3912 0.3918 0.8974 0.8961 0.8966 0.4224 40.0
0.014 4.0 868 3.8327 0.4738 0.2244 0.4005 0.4009 0.8966 0.8985 0.8974 0.4361 42.1364
0.0278 5.0 1085 3.8865 0.4679 0.2181 0.3942 0.3949 0.8968 0.8983 0.8974 0.4296 41.5909
0.0246 6.0 1302 3.8697 0.4642 0.2147 0.3904 0.3915 0.8959 0.8976 0.8966 0.421 41.6818
0.0204 7.0 1519 3.9737 0.4646 0.2159 0.395 0.3953 0.8964 0.8967 0.8964 0.421 40.7273
0.0179 8.0 1736 4.0367 0.461 0.2102 0.3896 0.3904 0.8969 0.8946 0.8956 0.4122 38.9727
0.0158 9.0 1953 4.0384 0.4695 0.2117 0.391 0.3921 0.8975 0.8978 0.8976 0.4269 40.4455
0.0159 10.0 2170 4.0446 0.4672 0.2166 0.3945 0.3951 0.8966 0.8982 0.8972 0.4296 41.3091
0.0126 11.0 2387 4.0704 0.4722 0.2223 0.3966 0.3979 0.8968 0.8978 0.8972 0.4356 41.1636
0.0132 12.0 2604 4.1046 0.468 0.2207 0.4011 0.402 0.8974 0.8978 0.8975 0.4341 40.5636
0.0109 13.0 2821 4.1023 0.4743 0.2217 0.4 0.4003 0.8978 0.8971 0.8974 0.4311 40.6091
0.0106 14.0 3038 4.1477 0.4691 0.2202 0.3979 0.3984 0.8974 0.8963 0.8967 0.4257 40.3545
0.0103 15.0 3255 4.1412 0.4753 0.2219 0.4048 0.4063 0.8982 0.8967 0.8973 0.4247 39.5091
0.01 16.0 3472 4.1251 0.4762 0.2259 0.4045 0.4063 0.8983 0.8978 0.898 0.4337 40.3909
0.0087 17.0 3689 4.1286 0.482 0.2256 0.405 0.4063 0.8971 0.8985 0.8976 0.4449 41.6455
0.0092 18.0 3906 4.1284 0.4675 0.2185 0.3981 0.3993 0.897 0.8973 0.897 0.4288 41.0818
0.0089 19.0 4123 4.1252 0.4695 0.2182 0.3981 0.3991 0.8966 0.897 0.8967 0.427 41.0636
0.0081 20.0 4340 4.1236 0.4731 0.2208 0.3994 0.4008 0.8972 0.897 0.897 0.4314 40.8273

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
223M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for roequitz/t5-abs-2309-1054-lr-0.0001-bs-2-maxep-20

Base model

google-t5/t5-base
Finetuned
(445)
this model