t5-abs-2209-2245-lr-0.001-bs-5-maxep-20

This model is a fine-tuned version of google-t5/t5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3529
  • Rouge/rouge1: 0.4351
  • Rouge/rouge2: 0.1856
  • Rouge/rougel: 0.3628
  • Rouge/rougelsum: 0.3635
  • Bertscore/bertscore-precision: 0.8903
  • Bertscore/bertscore-recall: 0.8895
  • Bertscore/bertscore-f1: 0.8895
  • Meteor: 0.3786
  • Gen Len: 39.1091

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 10
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge/rouge1 Rouge/rouge2 Rouge/rougel Rouge/rougelsum Bertscore/bertscore-precision Bertscore/bertscore-recall Bertscore/bertscore-f1 Meteor Gen Len
1.8988 1.0 87 1.7718 0.4358 0.2026 0.3713 0.3725 0.8968 0.8886 0.8925 0.3812 36.0364
1.6396 2.0 174 1.8159 0.4602 0.2124 0.3899 0.3907 0.8947 0.8923 0.8933 0.4147 38.8455
1.4382 3.0 261 1.8736 0.4566 0.207 0.3863 0.387 0.8972 0.892 0.8944 0.4039 37.6091
1.1395 4.0 348 1.8182 0.4505 0.197 0.3856 0.3852 0.8976 0.89 0.8937 0.3893 35.1455
1.4623 5.0 435 2.2330 0.4078 0.1637 0.3412 0.342 0.8953 0.8848 0.8898 0.3459 33.8182
1.5783 6.0 522 2.1105 0.4348 0.1859 0.365 0.3656 0.8955 0.889 0.892 0.3802 36.4
1.4249 7.0 609 2.1361 0.4364 0.1875 0.3675 0.3685 0.8962 0.8894 0.8926 0.3808 36.0909
1.3649 8.0 696 2.1641 0.4348 0.1822 0.3672 0.3677 0.8939 0.8886 0.891 0.3777 36.8364
1.3433 9.0 783 2.2002 0.4382 0.183 0.3703 0.3707 0.8932 0.8888 0.8907 0.3833 37.2
1.3906 10.0 870 2.2522 0.4359 0.1854 0.3644 0.3648 0.895 0.8897 0.8922 0.3804 37.1091
1.4484 11.0 957 2.3514 0.4343 0.1854 0.3628 0.3632 0.89 0.8892 0.8892 0.3767 38.7273
1.4984 12.0 1044 2.3529 0.4351 0.1853 0.3626 0.3632 0.8903 0.8895 0.8895 0.3783 39.1091
1.5084 13.0 1131 2.3529 0.4351 0.1856 0.3628 0.3635 0.8903 0.8895 0.8895 0.3786 39.1091
1.4992 14.0 1218 2.3529 0.4351 0.1856 0.3628 0.3635 0.8903 0.8895 0.8895 0.3786 39.1091
1.5098 15.0 1305 2.3529 0.4351 0.1856 0.3628 0.3635 0.8903 0.8895 0.8895 0.3786 39.1091
1.5147 16.0 1392 2.3529 0.4351 0.1856 0.3628 0.3635 0.8903 0.8895 0.8895 0.3786 39.1091
1.494 17.0 1479 2.3529 0.4351 0.1856 0.3628 0.3635 0.8903 0.8895 0.8895 0.3786 39.1091
1.5169 18.0 1566 2.3529 0.4351 0.1856 0.3628 0.3635 0.8903 0.8895 0.8895 0.3786 39.1091
1.5183 19.0 1653 2.3529 0.4351 0.1856 0.3628 0.3635 0.8903 0.8895 0.8895 0.3786 39.1091
1.5101 20.0 1740 2.3529 0.4351 0.1856 0.3628 0.3635 0.8903 0.8895 0.8895 0.3786 39.1091

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
223M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for roequitz/t5-abs-2209-2245-lr-0.001-bs-5-maxep-20

Base model

google-t5/t5-base
Finetuned
(445)
this model