metadata
license: apache-2.0
base_model: sshleifer/distilbart-xsum-12-6
tags:
- generated_from_trainer
model-index:
- name: bart-abs-1509-0313-lr-3e-06-bs-8-maxep-6
results: []
bart-abs-1509-0313-lr-3e-06-bs-8-maxep-6
This model is a fine-tuned version of sshleifer/distilbart-xsum-12-6 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 6.6809
- Rouge/rouge1: 0.3111
- Rouge/rouge2: 0.0793
- Rouge/rougel: 0.2212
- Rouge/rougelsum: 0.2213
- Bertscore/bertscore-precision: 0.8659
- Bertscore/bertscore-recall: 0.864
- Bertscore/bertscore-f1: 0.8649
- Meteor: 0.228
- Gen Len: 36.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge/rouge1 | Rouge/rouge2 | Rouge/rougel | Rouge/rougelsum | Bertscore/bertscore-precision | Bertscore/bertscore-recall | Bertscore/bertscore-f1 | Meteor | Gen Len |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.2815 | 1.0 | 109 | 6.6245 | 0.323 | 0.081 | 0.2516 | 0.2521 | 0.8764 | 0.8641 | 0.8702 | 0.2583 | 36.0 |
0.3942 | 2.0 | 218 | 6.6890 | 0.2515 | 0.0697 | 0.2094 | 0.21 | 0.8374 | 0.8631 | 0.85 | 0.2474 | 48.0 |
0.3862 | 3.0 | 327 | 6.6692 | 0.3111 | 0.0793 | 0.2212 | 0.2213 | 0.8659 | 0.864 | 0.8649 | 0.228 | 36.0 |
0.3708 | 4.0 | 436 | 6.6624 | 0.2439 | 0.0504 | 0.2065 | 0.2067 | 0.8544 | 0.8581 | 0.8562 | 0.229 | 45.0 |
0.3679 | 5.0 | 545 | 6.6795 | 0.3111 | 0.0793 | 0.2212 | 0.2213 | 0.8659 | 0.864 | 0.8649 | 0.228 | 36.0 |
0.3629 | 6.0 | 654 | 6.6809 | 0.3111 | 0.0793 | 0.2212 | 0.2213 | 0.8659 | 0.864 | 0.8649 | 0.228 | 36.0 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1