bart-abs-1509-0313-lr-3e-05-bs-4-maxep-10

This model is a fine-tuned version of sshleifer/distilbart-xsum-12-6 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.5339
  • Rouge/rouge1: 0.4605
  • Rouge/rouge2: 0.2065
  • Rouge/rougel: 0.3887
  • Rouge/rougelsum: 0.3902
  • Bertscore/bertscore-precision: 0.8931
  • Bertscore/bertscore-recall: 0.8914
  • Bertscore/bertscore-f1: 0.8921
  • Meteor: 0.4157
  • Gen Len: 37.8364

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge/rouge1 Rouge/rouge2 Rouge/rougel Rouge/rougelsum Bertscore/bertscore-precision Bertscore/bertscore-recall Bertscore/bertscore-f1 Meteor Gen Len
1.2307 1.0 217 2.1312 0.4591 0.2098 0.3873 0.3883 0.8977 0.892 0.8947 0.4036 37.4909
0.888 2.0 434 2.2053 0.4516 0.2075 0.3834 0.3857 0.8957 0.8906 0.893 0.3977 35.2273
0.784 3.0 651 2.3695 0.4573 0.2136 0.3893 0.3911 0.8972 0.8904 0.8937 0.4003 34.8
0.5673 4.0 868 2.6218 0.4714 0.2118 0.3982 0.3996 0.8947 0.8924 0.8934 0.4235 39.2727
0.4163 5.0 1085 2.9151 0.4683 0.2131 0.4005 0.4023 0.8958 0.8916 0.8935 0.4129 36.7545
0.3021 6.0 1302 3.0962 0.4648 0.2045 0.3918 0.3935 0.8967 0.893 0.8947 0.4119 37.0636
0.2266 7.0 1519 3.2782 0.4639 0.2074 0.3907 0.3925 0.8942 0.8941 0.894 0.4203 38.9273
0.1684 8.0 1736 3.4198 0.4565 0.1964 0.3822 0.3841 0.8934 0.8905 0.8918 0.4035 37.1818
0.1347 9.0 1953 3.4878 0.4723 0.2189 0.3987 0.4005 0.8954 0.8957 0.8954 0.4308 39.5273
0.1124 10.0 2170 3.5339 0.4605 0.2065 0.3887 0.3902 0.8931 0.8914 0.8921 0.4157 37.8364

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
306M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for roequitz/bart-abs-1509-0313-lr-3e-05-bs-4-maxep-10

Finetuned
(43)
this model