|
--- |
|
license: apache-2.0 |
|
base_model: t5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-small-hardaDerailKP |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-small-hardaDerailKP |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1390 |
|
- Rouge1: 51.5439 |
|
- Rouge2: 41.2421 |
|
- Rougel: 51.4764 |
|
- Rougelsum: 51.5006 |
|
- Gen Len: 6.3538 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 1.2197 | 1.0 | 6157 | 1.1987 | 51.2268 | 39.9596 | 51.1923 | 51.1914 | 6.7607 | |
|
| 0.9954 | 2.0 | 12314 | 1.1706 | 50.8022 | 39.6403 | 50.7374 | 50.6872 | 6.3795 | |
|
| 0.9489 | 3.0 | 18471 | 1.1442 | 52.3931 | 42.1802 | 52.3291 | 52.2775 | 6.3484 | |
|
| 0.8887 | 4.0 | 24628 | 1.1390 | 51.5439 | 41.2421 | 51.4764 | 51.5006 | 6.3538 | |
|
| 0.8414 | 5.0 | 30785 | 1.1799 | 51.9563 | 41.1814 | 51.8804 | 51.8698 | 6.7852 | |
|
| 0.753 | 6.0 | 36942 | 1.1829 | 52.4688 | 41.3965 | 52.3511 | 52.3868 | 6.6134 | |
|
| 0.7471 | 7.0 | 43099 | 1.1995 | 51.3549 | 40.6927 | 51.2323 | 51.2653 | 6.6271 | |
|
| 0.7327 | 8.0 | 49256 | 1.2001 | 51.5724 | 40.8948 | 51.4687 | 51.4899 | 6.6366 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|