ricardoSLabs's picture
End of training
f6614b7 verified
metadata
license: apache-2.0
base_model: LaLegumbreArtificial/Fraunhofer_Classical
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: Fraunhofer_Classical_multiclass_1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.99075

Fraunhofer_Classical_multiclass_1

This model is a fine-tuned version of LaLegumbreArtificial/Fraunhofer_Classical on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0275
  • Accuracy: 0.9908

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0756 1.0 146 0.1135 0.9647
0.0435 2.0 292 0.0648 0.9785
0.0536 3.0 438 0.0442 0.984
0.0389 4.0 584 0.0285 0.9898
0.0292 5.0 730 0.0275 0.9908

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1