metadata
base_model: BAAI/bge-base-en-v1.5
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
Chevron regularly conducts employee surveys throughout the year to assess
the health of the company’s culture, allowing them to gain insights into
employee well-being.
sentences:
- >-
What was the net cash provided by operating activities for the year
ended December 31, 2023?
- >-
How often does Chevron conduct employee surveys to assess the health of
its culture?
- >-
What were the total future minimum lease payments for Comcast's
operating leases as of December 31, 2023?
- source_sentence: >-
Gross margin for the fiscal year decreased 250 basis points to 43.5%
primarily driven by higher product costs, higher markdowns and unfavorable
changes in foreign currency exchange rates, partially offset by strategic
pricing actions.
sentences:
- >-
How does the company maintain high standards of product quality and
safety?
- >-
What were the main factors that negatively impacted NIKE's gross margin
in fiscal 2023?
- >-
What was the growth rate of Visa Inc.'s commercial payments volume
internationally between 2021 and 2022?
- source_sentence: >-
Mr. Teter holds a B.S. degree in Mechanical Engineering from the
University of California at Davis and a J.D. degree from Stanford Law
School.
sentences:
- What degrees does Timothy S. Teter hold and from which institutions?
- >-
What regulations are in place in Europe regarding interactions between
pharmaceutical companies and physicians?
- >-
What economic factors particularly affected Garmin's consumer behavior
in 2023?
- source_sentence: >-
Our Office of Diversity, Equity and Inclusion supports our focus on
associate diversity, supplier diversity, and engagement with our
communities.
sentences:
- >-
What are the three segments of alcohol ready-to-drink beverages the
company is focusing on?
- How much net cash was provided by operating activities in 2023?
- >-
What is the focus of The Home Depot's Office of Diversity, Equity and
Inclusion?
- source_sentence: >-
Net cash used in financing activities totaled $2,614 in 2023, compared to
$4,283 in 2022.
sentences:
- >-
What was the net cash used in financing activities in 2023 and how does
it compare to 2022?
- >-
What are Chipotle's key strategies for business growth as discussed in
their strategy?
- >-
What are the primary regulatory authorities that supervise and regulate
JPMorgan Chase in the U.S.?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6971428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.82
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8685714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9057142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6971428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2733333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1737142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09057142857142855
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6971428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.82
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8685714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9057142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.803607128355984
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.770687641723356
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.77485834386751
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6957142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8228571428571428
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8642857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9042857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6957142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2742857142857143
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17285714285714285
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0904285714285714
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6957142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8228571428571428
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8642857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9042857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.802840202489837
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7701360544217687
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7744106258164117
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6871428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8185714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8528571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8985714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6871428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27285714285714285
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17057142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08985714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6871428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8185714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8528571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8985714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.795190594370522
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7619773242630383
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7664081914180308
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6685714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8128571428571428
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8428571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8942857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6685714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27095238095238094
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16857142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08942857142857143
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6685714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8128571428571428
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8428571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8942857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7840862792892018
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7486655328798184
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7527149388922518
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6471428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7828571428571428
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8242857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8685714285714285
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6471428571428571
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26095238095238094
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16485714285714284
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08685714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6471428571428571
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7828571428571428
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8242857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8685714285714285
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7601900384958588
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.725268707482993
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7302983967510448
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("revtestuser/bge-base-financial-matryoshka")
sentences = [
'Net cash used in financing activities totaled $2,614 in 2023, compared to $4,283 in 2022.',
'What was the net cash used in financing activities in 2023 and how does it compare to 2022?',
"What are Chipotle's key strategies for business growth as discussed in their strategy?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6971 |
cosine_accuracy@3 |
0.82 |
cosine_accuracy@5 |
0.8686 |
cosine_accuracy@10 |
0.9057 |
cosine_precision@1 |
0.6971 |
cosine_precision@3 |
0.2733 |
cosine_precision@5 |
0.1737 |
cosine_precision@10 |
0.0906 |
cosine_recall@1 |
0.6971 |
cosine_recall@3 |
0.82 |
cosine_recall@5 |
0.8686 |
cosine_recall@10 |
0.9057 |
cosine_ndcg@10 |
0.8036 |
cosine_mrr@10 |
0.7707 |
cosine_map@100 |
0.7749 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6957 |
cosine_accuracy@3 |
0.8229 |
cosine_accuracy@5 |
0.8643 |
cosine_accuracy@10 |
0.9043 |
cosine_precision@1 |
0.6957 |
cosine_precision@3 |
0.2743 |
cosine_precision@5 |
0.1729 |
cosine_precision@10 |
0.0904 |
cosine_recall@1 |
0.6957 |
cosine_recall@3 |
0.8229 |
cosine_recall@5 |
0.8643 |
cosine_recall@10 |
0.9043 |
cosine_ndcg@10 |
0.8028 |
cosine_mrr@10 |
0.7701 |
cosine_map@100 |
0.7744 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6871 |
cosine_accuracy@3 |
0.8186 |
cosine_accuracy@5 |
0.8529 |
cosine_accuracy@10 |
0.8986 |
cosine_precision@1 |
0.6871 |
cosine_precision@3 |
0.2729 |
cosine_precision@5 |
0.1706 |
cosine_precision@10 |
0.0899 |
cosine_recall@1 |
0.6871 |
cosine_recall@3 |
0.8186 |
cosine_recall@5 |
0.8529 |
cosine_recall@10 |
0.8986 |
cosine_ndcg@10 |
0.7952 |
cosine_mrr@10 |
0.762 |
cosine_map@100 |
0.7664 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6686 |
cosine_accuracy@3 |
0.8129 |
cosine_accuracy@5 |
0.8429 |
cosine_accuracy@10 |
0.8943 |
cosine_precision@1 |
0.6686 |
cosine_precision@3 |
0.271 |
cosine_precision@5 |
0.1686 |
cosine_precision@10 |
0.0894 |
cosine_recall@1 |
0.6686 |
cosine_recall@3 |
0.8129 |
cosine_recall@5 |
0.8429 |
cosine_recall@10 |
0.8943 |
cosine_ndcg@10 |
0.7841 |
cosine_mrr@10 |
0.7487 |
cosine_map@100 |
0.7527 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6471 |
cosine_accuracy@3 |
0.7829 |
cosine_accuracy@5 |
0.8243 |
cosine_accuracy@10 |
0.8686 |
cosine_precision@1 |
0.6471 |
cosine_precision@3 |
0.261 |
cosine_precision@5 |
0.1649 |
cosine_precision@10 |
0.0869 |
cosine_recall@1 |
0.6471 |
cosine_recall@3 |
0.7829 |
cosine_recall@5 |
0.8243 |
cosine_recall@10 |
0.8686 |
cosine_ndcg@10 |
0.7602 |
cosine_mrr@10 |
0.7253 |
cosine_map@100 |
0.7303 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 8 tokens
- mean: 44.91 tokens
- max: 246 tokens
|
- min: 8 tokens
- mean: 20.43 tokens
- max: 43 tokens
|
- Samples:
positive |
anchor |
Certain provisions of the final rule become effective on April 1, 2024, but the majority of the final rule’s operative provisions (including the revisions to the definition of “limited purpose bank”) become effective on January 1, 2026, with additional data collection and reporting requirements becoming effective on January 1, 2027. |
What are the effective dates for the main provisions and additional data collection and reporting requirements of the final rule impacting AENB's compliance obligations? |
Our total revenue for 2023 was $134.90 billion, an increase of 16% compared to 2022. |
What was the total revenue for the year 2023 and the percentage increase from 2022? |
As of December 31, 2023, our domestic Chief Medical Officer leads a team of 22 nephrologists in our physician leadership team as part of our domestic Office of the Chief Medical Officer. |
How many physicians are part of the domestic Office of the Chief Medical Officer at DaVita as of December 31, 2023? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
fp16
: True
tf32
: False
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.8122 |
10 |
1.6288 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7384 |
0.7485 |
0.7508 |
0.7013 |
0.7561 |
1.6244 |
20 |
0.6896 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7499 |
0.7621 |
0.7676 |
0.7220 |
0.7704 |
2.4365 |
30 |
0.4965 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.7529 |
0.7669 |
0.7739 |
0.7302 |
0.7754 |
3.2487 |
40 |
0.415 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.7527 |
0.7664 |
0.7744 |
0.7303 |
0.7749 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}