asahi417's picture
model update
c0e8f25
|
raw
history blame
5.34 kB
metadata
license: cc-by-4.0
metrics:
  - bleu4
  - meteor
  - rouge-l
  - bertscore
  - moverscore
language: en
datasets:
  - lmqg/qg_squad
pipeline_tag: text2text-generation
tags:
  - question generation
widget:
  - text: >-
      generate question: <hl> Beyonce <hl> further expanded her acting career,
      starring as blues singer Etta James in the 2008 musical biopic, Cadillac
      Records.
    example_title: Question Generation Example 1
  - text: >-
      generate question: Beyonce further expanded her acting career, starring as
      blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac
      Records.
    example_title: Question Generation Example 2
  - text: >-
      generate question: Beyonce further expanded her acting career, starring as
      blues singer Etta James in the 2008 musical biopic,  <hl> Cadillac Records
      <hl> .
    example_title: Question Generation Example 3
model-index:
  - name: lmqg/t5-large-squad-no-paragraph
    results:
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_squad
          type: default
          args: default
        metrics:
          - name: BLEU4
            type: bleu4
            value: 25.36
          - name: ROUGE-L
            type: rouge-l
            value: 52.53
          - name: METEOR
            type: meteor
            value: 26.28
          - name: BERTScore
            type: bertscore
            value: 90.88
          - name: MoverScore
            type: moverscore
            value: 64.44

Model Card of lmqg/t5-large-squad-no-paragraph

This model is fine-tuned version of t5-large for question generation task on the lmqg/qg_squad (dataset_name: default) via lmqg. This model is fine-tuned without pargraph information but only the sentence that contains the answer.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="en", model="lmqg/t5-large-squad-no-paragraph")

# model prediction
questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/t5-large-squad-no-paragraph")
output = pipe("generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")

Evaluation

Score Type Dataset
BERTScore 90.88 default lmqg/qg_squad
Bleu_1 57.49 default lmqg/qg_squad
Bleu_2 41.59 default lmqg/qg_squad
Bleu_3 32.1 default lmqg/qg_squad
Bleu_4 25.36 default lmqg/qg_squad
METEOR 26.28 default lmqg/qg_squad
MoverScore 64.44 default lmqg/qg_squad
ROUGE_L 52.53 default lmqg/qg_squad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_squad
  • dataset_name: default
  • input_types: ['sentence_answer']
  • output_types: ['question']
  • prefix_types: ['qg']
  • model: t5-large
  • max_length: 128
  • max_length_output: 32
  • epoch: 6
  • batch: 16
  • lr: 5e-05
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 4
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}