metadata
base_model: microsoft/Phi-3.5-mini-instruct
language:
- multilingual
library_name: transformers
license: mit
license_link: https://huggingface.co/microsoft/Phi-3.5-mini-instruct/resolve/main/LICENSE
pipeline_tag: text-generation
tags:
- nlp
- code
- llama-cpp
- gguf-my-repo
widget:
- messages:
- role: user
content: Can you provide ways to eat combinations of bananas and dragonfruits?
redhat6/Phi-3.5-mini-instruct-Q4_K_M-GGUF
This model was converted to GGUF format from microsoft/Phi-3.5-mini-instruct
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with Ollama
Create the model in Ollama
ollama create Phi-3.5-mini-instruct-Q4_K_M-GGUF -f Modelfile
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo redhat6/Phi-3.5-mini-instruct-Q4_K_M-GGUF --hf-file phi-3.5-mini-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo redhat6/Phi-3.5-mini-instruct-Q4_K_M-GGUF --hf-file phi-3.5-mini-instruct-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo redhat6/Phi-3.5-mini-instruct-Q4_K_M-GGUF --hf-file phi-3.5-mini-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo redhat6/Phi-3.5-mini-instruct-Q4_K_M-GGUF --hf-file phi-3.5-mini-instruct-q4_k_m.gguf -c 2048